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Abstract Lung squamous cell carcinoma (LUSC) is a type of lung cancer with a dismal prognosis 
that lacks adequate therapies and actionable targets. This disease is characterized by a sequence 
of low- and high-grade preinvasive stages with increasing probability of malignant progression. 
Increasing our knowledge about the biology of these premalignant lesions (PMLs) is necessary to 
design new methods of early detection and prevention, and to identify the molecular processes that 
are key for malignant progression. To facilitate this research, we have designed XTABLE (Exploring 
Transcriptomes of Bronchial Lesions), an open-source application that integrates the most extensive 
transcriptomic databases of PMLs published so far. With this tool, users can stratify samples using 
multiple parameters and interrogate PML biology in multiple manners, such as two- and multiple-
group comparisons, interrogation of genes of interests, and transcriptional signatures. Using 
XTABLE, we have carried out a comparative study of the potential role of chromosomal instability 
scores as biomarkers of PML progression and mapped the onset of the most relevant LUSC path-
ways to the sequence of LUSC developmental stages. XTABLE will critically facilitate new research 
for the identification of early detection biomarkers and acquire a better understanding of the LUSC 
precancerous stages.

Editor's evaluation
The authors have created a resource tool that is valuable in assessing precancerous lesions in the 
lung, which may serve as a tool for investigators working in this area, and as an example for addi-
tional similar resources. The accessibility of the tool is a concern but does not diminish the quality of 
the product.

Introduction
Lung squamous cell carcinoma (LUSC) is a type of non-small cell lung cancer that accounts for 20–30% 
of all lung cancer cases (Chen et al., 2014; Sung et al., 2021; Bray et al., 2021). Despite being the 
second most frequent type of lung cancer (Torre et al., 2016), our knowledge regarding the biology 
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of this disease as well as the therapeutic modalities to treat it remain far behind the most frequent 
type of lung cancer, lung adenocarcinoma (LUAD) (Hirsch et al., 2016; Khuder, 2001).

LUAD genetics is dominated by mutations (that are often druggable) that activate the RTK/RAS 
pathway, including EGFR and KRAS mutations (The Cancer Genome Atlas Research Network, 2012; 
Jamal-Hanjani et al., 2017). However, the genetic landscape of LUSC is more complex, with multiple 
pathways altered in subsets of patients and a lack of actionable mutations (Campbell et al., 2016; 
The Cancer Genome Atlas Research Network, 2012; Kim et al., 2014), precluding the development 
of new therapies. Hence, the only pharmacological therapies available to treat LUSC patients are 
immune checkpoint inhibitor monotherapy or in combination with chemotherapy (Mok et al., 2019; 
Paz-Ares et al., 2018; Weinberg and Gadgeel, 2019). Furthermore, the National Lung Cancer Matrix 
Trial and The Lung Master Protocol, the largest personalized medicine trials in lung cancer, have not 
shown clear therapeutic benefits with targeted agents in LUSC (; Middleton et al., 2020; Redman 
et al., 2020). LUSC also has a worse prognosis than LUAD independent of stage at detection, with a 
5-year overall survival (OS) of 6.2% for patients diagnosed with distant metastasis (9.5% for LUAD). 
However, patients diagnosed with localized disease are eligible for curative surgery and the 5-year OS 
is 50% (National Cancer Institute and DCCPS, 2018). Therefore, early detection is currently the most 
valuable tool to prevent deaths by LUSC as evidenced by several ongoing programmes of lung cancer 
early detection (Crosbie et al., 2019a; Crosbie et al., 2019b; Aberle et al., 2011). These initiatives 
make use of low-dose CT scans in high-risk populations, but in spite of the frequent detection of 
localized lung cancer eligible for resection with curative intent, 40% of early diagnosed patients die 
within 5 years.

LUSC progresses through a series of premalignant stages characterized by alterations of the 
normal bronchial epithelium (Figure 1; Ishizumi et al., 2010; Kadara et al., 2016; Thakrar et al., 
2017; Pennycuick et al., 2020). These endobronchial premalignant lesions (PMLs) are classified as 
low-grade (squamous metaplasia, mild and moderate dysplasia) and high-grade (severe dysplasia, 
and carcinomas in situ [CIS]) (Figure 1). However, not all PMLs progress to LUSC. Although obvious 
differences exist between the multiple studies published on the topic, high-grade PMLs have a higher 
risk of progression than low grade, and high levels of chromosomal instability (CIN) are also predictive 

eLife digest Lung squamous cell carcinoma is the second most common lung cancer. However, 
very little is known about how normal tissues in the lung develop in to these tumours. Like many 
cancers, this transformation comprises of an intermediate phase where healthy cells begin to form 
lesions that may (or may not) progress in to tumours. Understanding the biology of these lesions in 
lung squamous cell carcinoma may help clinicians detect them before they become cancerous.

Knowing which genes are switched on and off during this intermediary phase can provide clues as 
to how these lesions form. There are already some publicly available transcriptional datasets showing 
the activity of tens of thousands of genes in pre-cancerous lesions extracted from patients with lung 
squamous cell carcinoma. But not every laboratory has the bioinformatic tools and skills required to 
interrogate these extensive databases.

To address this, Roberts et al. built an open-source platform called XTABLE (short for Exploring 
Transcriptomes of Bronchial Lesions) which can analyse transcriptional datasets in multiple ways 
depending on the needs of the user. For instance, the tool can stratify the data into groups based on 
different parameters, such as the lesions potential to progress in to cancer, to see how the genes of 
the groups compare. It can also analyse the activity of individual genes and sets of genes involved in 
the same biological processes.

Using XTABLE, Roberts et al. showed that a biological process linked to lung squamous cell carci-
noma is also involved in the formation of pre-cancerous lesions. This suggests that molecules and 
genes associated with this process could potentially help scientists design prevention strategies.

XTABLE will help researchers to better understand the biology of pre-cancerous lesions and how 
they develop in to tumours. Moreover, it will make it easier for scientists to validate their hypotheses 
using data collected from patients. The tool could also be useful for scientists interested in other 
types of lung cancers that share a similar biology.

https://doi.org/10.7554/eLife.77507
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of progressive PMLs (Thakrar et al., 2017; van Boerdonk et al., 2014; Teixeira et al., 2019; Merrick 
et al., 2016). This potential role of CIN as biomarker of PMLs progression has been observed in low- 
and high-grade PMLs (van Boerdonk et al., 2014; Teixeira et al., 2019). These reports showed that 
high levels of copy number variations was the best predictor of progressive PMLs (van Boerdonk 
et al., 2014; Teixeira et al., 2019) and that immune response is the most likely cause of regression 
as these lesions contained higher levels of immune infiltration (Pennycuick et al., 2020; Beane et al., 
2019). These results are supported by transcriptomic analysis of PMLs that indicate immune evasion 
in the transition to invasiveness (Mascaux et al., 2019).

The detection of PMLs cannot be carried out by routine patient imaging techniques such as CT or 
PET scans as the morphological change that they cause in the airway does not result in radiological 
contrast. Alternatively, ablation of high-grade PMLs detected by autofluorescence bronchoscopy using 
minimally invasive endoscopic procedures in high-risk populations is an innovative and interesting 
strategy to prevent LUSC (Guibert et al., 2016). Nonetheless autofluorescence bronchoscopy is an 
expensive and complex technique of limited use in large screening programmes. Therefore, simpler, 

Figure 1. Developmental stages of lung squamous cell carcinoma (LUSC) premalignant lesions (PMLs) with representative histological images for each 
stage (haematoxilyn-eosin) and a summary of the four studies included in XTABLE (Exploring Transcriptomes of Bronchial Lesions). PMLs are typically 
classified as normal epithelium (including hyperplasia), low-grade and high-grade. Two studies (Mascaux et al., 2019, and Beane et al., 2019) carried 
out gene expression analysis of multiple developmental stages, whereas Merrick et al., 2018, and Teixeira et al., 2019, focused on dysplasias (blue 
boxes) and carcinomas in situ (CIS) (pink boxes), respectively. The most relevant findings of each article are summarized in the figure. Error bars=50 µm.

https://doi.org/10.7554/eLife.77507
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more cost effective, and scalable methods of high-grade PML detection are needed to prevent deaths 
by LUSC. Improving the detection of PMLs requires a better understanding of their biology and the 
validation of adequate biomarkers of progressive lesions that can be translated into new technologies 
for large screening initiatives. Cell surface proteins, metabolites, nasal-based biomarkers, blood and 
sputum/bronchoalveolar lavage biomarkers are examples of biomarkers that can be used to improve 
and/or complement current diagnostic techniques (such as CT and PET scans) or develop new ones. A 
user-friendly application to interrogate gene expression from studies focusing on precancerous LUSC 
stages will enhance the advances in PML biology. However, such application does not exist.

Recently, scientific interest in the biology of preinvasive LUSC stages has motivated the publication 
of several articles characterizing PML transcriptomes from various perspectives (Figure 1). Two reports 
published by Beane et al., 2019, and Mascaux et al., 2019, showed stage-by-stage gene expression 
analyses of PMLs. These studies provided the most detailed transcriptomic characterization of all PML 
stages so far and identified changes in the immune microenvironment associated with invasive trans-
formation. Additionally, longitudinal studies by Beane et al., 2019, Merrick et al., 2018, and Teixeira 
et  al., 2019, contained samples with known progression potential. Beane et  al., 2019, identified 
molecular subtypes with specific biological traits whereas articles published by Merrick et al., 2018, 
and Teixeira et al., 2019 focused on gene expression of specific preinvasive stages (dysplasias and 
CIS, respectively) with the objective of identifying predictors of PML progression and the biomolecular 
processes involved (Figure 1). These studies provide a valuable source of gene expression data to 
identify candidate biomarkers for the detection of high-risk PMLs and/or early stage LUSC as well as 
to investigate the biology of premalignant LUSC progression.

Transparent and straightforward accessibility to transcriptomic databases is a key requirement for 
the open science philosophy. Applications that integrate multiple databases focusing on the same 
biological and clinical problem, such as camcAPP (Dunning et al., 2017), allow cross-comparisons 
between independent studies, strengthen the robustness of results obtained, and allow the selec-
tion of high-confidence data. In this report, we provide an overall description of XTABLE (Exploring 
Transcriptomes of Bronchial Lesions) and provide examples of its functions. XTABLE is a new open-
source application that will enable scientists to interrogate currently four LUSC PML transcriptomic 
datasets in a versatile manner that can be adapted to the needs of each researcher. Specifically, LUSC 
prevention and diagnosis are the main areas that can benefit the most from XTABLE, but its versatility 
and multiple functions lend themselves to the exploration of a variety of research questions. Without 
XTABLE, researchers would have to put together all the packages, data processing steps themselves 
for each analysis they wished to run. In this report, we provide an overall explanation of all the func-
tions of XTABLE as well as a detailed description of the most important analysis modules, including 
two-group comparisons, gene-of-interest analyses, and interrogation of transcriptional signatures. 
Additionally, we explored the use of CIN-related signatures as a biomarker of progressive PMLs and 
mapped the onset of the most important LUSC pathways to its developmental stages.

Table 1. Description of the four cohorts included in XTABLE (Exploring Transcriptomes of Bronchial 
Lesions).

GEO 
accession PMID Stages

Progression 
status known

Number of 
samples Sample type Transcriptome

GSE33479 31243362 Multiple No 122 Whole biopsies Microarray

GSE109743 31015447 Multiple* Yes

448
Discovery 
cohort (197 Bx, 
91 Br)
Validation 
cohort (111Bx, 
49 Br)

Whole biopsies 
and brushings RNAseq

GSE114489 29997230
Dysplasias 
normal Yes 63 Whole biopsies Microarray

GSE108124 30664780 CIS Yes 33 Microdissected Microarray

Bx: biopsies; Br: brushings.
*This cohort includes neither carcinomas in situ (CIS) nor invasive carcinomas.

https://doi.org/10.7554/eLife.77507
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Results
Description of the studies included 
in XTABLE
Four datasets originating from four independent 
PML transcriptomic studies have been included 
in the XTABLE application (Figure  1, Table  1). 
Two datasets, GSE109743 (Beane et  al., 2019) 
and GSE33479 (Mascaux et  al., 2019), provide 
gene expression data of the developmental LUSC 
stages (with and without progression status infor-
mation, respectively), whereas the remaining 
studies, GSE114489 (Merrick et  al., 2018) and 
GSE108124 (Teixeira et  al., 2019), focus on 
analysing specific PML stages (dysplasias and 
CIS, respectively) that have been followed up to 
establish their progressive, persistent, or regres-
sive potential.

Dataset GSE33479 (Mascaux et  al., 2019) 
comprises expression microarray analyses of 122 endobronchial biopsies of unknown progression 
status. Samples were obtained following autofluorescence bronchoscopy and as no enrichment 
or microdissection of the biopsy epithelium was carried out, variable levels of stromal component 
are present in samples. Although this results in dilution of epithelial signals, it has the advantage of 
providing information about the microenvironment as well as insights into the infiltrated immune cells. 
Dataset GSE109743 (Beane et al., 2019) consists of a transcriptomic analysis of whole PML biopsies 
with no purification of the epithelial compartment as well as bronchial brushings obtained from adja-
cent normal regions of the bronchial mucosa. Unlike GSE33479, GSE109743 used RNAseq and more 
importantly, includes the progression status for some lesions established by serial biopsies. Samples 
were classified as ‘normal-stable’ when they changed between normal, hyperplasia, and metaplasia, 
‘regressive’ when they regress from dysplasia to a less severe dysplastic grade, or from dysplasia 
to normal/hyperplasia/metaplasia. Remaining samples were considered persistent/progressive. One 
advantage of this dataset is the large number of samples divided into a discovery and a validation 
cohort (Figure 1, Table 1). However, the representation of each PML stage is not homogeneous and 
CIS samples are not included.

Datasets GSE114489 (Merrick et al., 2018) and GSE108124 (Teixeira et al., 2019) constitute a 
different type of study. Both make use of sequential biopsies to classify lesions according to their 
progression potential, but they differ in the stages included, the classification of progression status 
and sample processing. In GSE114489, the authors collected 63 baseline bronchial biopsies (with 
corresponding follow-up biopsies) and classified samples in four groups: 23 persistent dysplasias 
(dysplastic lesions with the same or higher severity scores in follow-up biopsies), 15 regressive dyspla-
sias (dysplasias progressing to lower severity scores), 9 progressive non-dysplasias (biopsies with 
normal or hyperplastic morphologies that progress to more severe morphologies), and 16 stable non-
dysplasias (normal or hyperplastic pathology that remains stable in follow-up biopsies). Microarray 
analysis of gene expression was performed on whole biopsies. The study published by Teixeira et al., 
2019 (GSE108124) also makes use of follow-up biopsies to classify the progression potential of PMLs, 
but unlike GSE114489, GSE108124 focuses on CIS and progression is defined as the transition to 
invasive carcinomas in follow-up biopsies. RNA for gene expression microarray analysis was extracted 
from microdissected FFPE samples to enrich the epithelial component.

XTABLE access, interface, and functions
XTABLE download can be carried out from https://gitlab.com/cruk-mi/xtable (copy archived at 
Roberts, 2022) following the instructions in the Materials and methods section and Video 1. XTABLE 
has been designed using the shiny app interface (see Materials and methods section) and its functions 
have been divided into 11 interrelated tabs that contain a specific function to interrogate each dataset 
separately (Figure 2A).

Video 1. Step-by-step instructions to install XTABLE 
(Exploring Transcriptomes of Bronchial Lesions) using 
RStudio.

https://elifesciences.org/articles/77507/figures#video1

https://doi.org/10.7554/eLife.77507
https://gitlab.com/cruk-mi/xtable
https://elifesciences.org/articles/77507/figures#video1
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Introduction
Detailed description of the four studies, analyses performed in each tab, output formats, links to the 
four articles used in the application, bioinformatic packages used in the different functions and addi-
tional references.

Dataset tab
Explanation of the differences in methodology and progression status definitions between the four 
studies.

Figure 2. Overall organization of XTABLE (Exploring Transcriptomes of Bronchial Lesions) functions and use of the DEG function. (A) Organization of all 
the functions in the XTABLE interface. The functions are interrelated and completing certain analyses requires the use of several functions. For instance, 
the GSEA and PA functions operate with gene lists obtained with the DEG function. (B) Workflow to obtain differentially expressed genes between 
two groups using the DEG function. The example shows groups of samples arranged by developmental stage to compare low-grade and high-grade 
premalignant lesions (PMLs) in the GSE33479 cohort. (C and D) Workflow to obtain differentially expressed genes between two groups using the DEG 
function. The two groups have been arranged by progression status using in the GSE114489 and GSE108124 cohorts, respectively.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Sample selection options for cohort GSE109743.

Figure supplement 2. Visualization of chromosomal instability (CIN)-scores in with XTABLE (Exploring Transcriptomes of Bronchial Lesions).

Figure supplement 3. Example of receiver operating characteristic (ROC) curves visualization for a gene of interest (NRTK2) in premalignant lesion 
(PML) samples stratified by low and high grades.

https://doi.org/10.7554/eLife.77507
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Load tab
In this tab, the user selects the database (GSE114489, GSE108124, GSE109743, or GSE33479) for 
subsequent interrogation. Due to specific differences between the four studies, only one dataset can 
be interrogated at a time. Since dataset GSE109743 contains a discovery and a validation cohort, as 
well as biopsies and brushings, preselection of the cohort and type of sample has to be carried out 
(Figure 2—figure supplement 1).

CIN-score tab
CIN has been identified as a good predictor of PML progression. Except for Teixeira et al., 2019, 
the other three studies do not provide genomic analyses that provide an estimate of the level of 
chromosomal alterations in the samples. Several gene expression signatures that correlate with CIN 
(CIN-scores) have been described in the literature (Teixeira et al., 2019; Carter et al., 2006). This 
CIN-score function returns a list of several CIN-scores (CIN70, CIN25, and CIN5, depending on the 
number of genes included in the signature) for all samples included in the study and a graph depicting 
CIN-scores in different sample types classified according to the sample classification defined in the 
study. A line marking a selected CIN-score threshold can be added for visualization purpose and to 
help determine appropriate thresholds for additional CIN-related analyses (Figure 2—figure supple-
ment 2).

DEG tab
Function to identify differentially expressed genes in comparisons of two groups of samples deter-
mined by the user. This function allows the selection of p-value and fold-change cutoffs for the anal-
ysis. Additionally, AUC is calculated for each gene to provide further confidence to the differentially 
expressed gene results and additional gene IDs are added at this stage that have been sourced from 
two separate datasets to maximize identification and discrepancies manually reviewed to improve 
downstream enrichment and pathway analyses.

GSEA and PA
In these two tabs, the user can carry out gene set and pathway enrichment analyses using multiple 
tools (goseq/ideal, fgsea/MSigDB, enrichR, gage/gageData, kegga/pathview, ReactomePA, Progeny, 
and Dorothea). This function operates with the list of differentially expressed genes obtained with the 
DEG function.

Signature
This function returns the gene expression values of a user-defined gene list. Lists can be manually 
entered or uploaded from a .csv file.

Deconvolution
Estimation of immune and stromal component in samples from gene expression data using the ESTI-
MATE tool.

ROC
This function returns receiver operating characteristic (ROC) curves in a user-defined comparison of 
two groups of samples stratified by the expression of a gene or by CIN-scores.

Heatmap
Returns a gene expression heatmap for genes selected by variance, user-defined gene signatures, and 
differentially expressed genes in the DEG tab.

PCA
Principal component analysis (PCA) of all the samples included in each study. Several sample char-
acteristics can be highlighted in the PCA plot including CIN signatures, progression status, and PML 
stage.

https://doi.org/10.7554/eLife.77507


 Tools and resources﻿﻿﻿﻿﻿﻿ Cancer Biology | Computational and Systems Biology

Roberts et al. eLife 2023;12:e77507. DOI: https://doi.org/10.7554/eLife.77507 � 8 of 21

Gene
Statistical analysis of expression of individual genes selected by the user. Several options for sample 
groupings are available.

Two-group differential expression analysis
The discovery of candidate biomarkers for the detection of PMLs at high risk of malignant progression 
and the interrogation of PML biology depends greatly on the comparison of gene expression profiles 
between lesions with known progressive or regressive potential. The four databases included in 
XTABLE contain different types of information which influence how users can interrogate these data-
bases. To facilitate the interrogation of the four transcriptomic databases in a manner that allows the 
versatile stratification of samples, we have designed a module in XTABLE named DEG (Figure 2B–D), 
that returns the differentially expressed genes in two user-defined groups of samples stratified by 
PML stage (GSE33479 and GSE109743), by known progression status (GSE109743, GSE114489, 
and GSE108124) or by CIN-score thresholds. In XTABLE, we have included three CIN-scores, named 
CIN70, CIN25 (Carter et al., 2006), and CIN5 (Teixeira et al., 2019). CIN70 and CIN25 have been 
reported in the literature, with the former containing the greatest number of genes for interrogation. 
CIN5 is derived from the signature used by Teixeira et al., 2019, and is reported to show a good 
correlation with progression in CIS lesions.

Setting contrast groups by stage using DEG allows the comparison of two individual PML stages 
or the grouping of multiples stages into two groups. For instance, to compare the differential expres-
sion between low-grade and high-grade PMLs, we can define two contrast groups, one including 
metaplasia, low and moderate dysplasia (low-grade) and one including severe dysplasia and CIS 
(high-grade) using cohort GSE33479 (Figure 2B). After selection of the cohort and setting up the 
groups (Figure 2B), the application returns a downloadable list of differentially expressed genes with 
associated statistical information (Figure 2B), including AUC inferred by ROC analysis. ROC curves 
associated with each gene in a two-group comparison, useful for biomarker discovery, can be down-
loaded using the ROC tab (Figure 2—figure supplement 3). Straightforward grouping of progressive 
and regressive samples can also be carried out by selecting the ‘Progression’ contrast in studies that 
provide this information (Figure 2C and D). To carry out two-group comparison by CIN signatures, 
the CIN-score tab provides a graphic visualization of the three CIN-scores for all samples to guide 
the selection of a CIN-score threshold for sample stratification (Figure 3A). A .csv file containing the 
CIN-scores of all samples can be downloaded. The selected CIN threshold can be used in the DEG tab 
to stratify CIN-high and low samples and retrieve a list of differentially expressed genes (Figure 3A).

Figure 3. Differential expression analysis between two groups of samples classified according to a chromosomal instability (CIN)-score threshold. The 
CIN-score function allows the graphic visualization of CIN-scores for all samples in a study. A CIN-score threshold selected by the user can be depicted 
on the graph (red dotted line). The CIN-score threshold selected by the user can be used in the DEG tab to define the two-group comparison. Stages 
1–9 represent the nine developmental stages of LUSC as described in Mascaux et al., 2019 (GSE33479). CIN70, CIN25, and CIN5 can be used in the 
DEG tab. Sample sizes: n=12 (stage 7), n=13 (stages 1, 5, 6 and 8), n=14 (stages 2 and 9), n=15 (stages 3 and 4). Boxplots show median and upper/lower 
quartile. Whiskers show the smallest and largest observations within 1.5× IQR.

https://doi.org/10.7554/eLife.77507
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The list of differentially expressed genes obtained in the DEG tab can be automatically used in 
the GSEA and PA tabs to carry out gene set enrichment and pathway analyses. The GSEA tab allows 
the user to select the gene set enrichment tool (goseq, fgsea/MSigDB, enrichR, and gage), p-value 
cutoff, and the gene sets to analyse (Figure 4A). For instance, using the goseq function enables us 
to select one of the three Gene Ontology domains (biological process, cellular compartment, and 
molecular function) to consider for analysis (Figure 4A). Similarly, with the fgsea/MSigDB tool, the 
user can select the gene set of interest (Figure 4B). The PA tab operates in a similar manner using 
four pathway analysis tools (kegga/pathview, ReactomePA, Progeny, and Dorothea) (Figure 4—figure 
supplement 1).

Gene-centred analysis and user-defined transcriptional signatures
Users can investigate their own gene or group of genes of interest in the application. To facilitate this 
type of gene-centred analyses, we have included the Genes and Signature functions in XTABLE.

In the Genes tab, the user can analyse the expression of one gene of interest. This tab is divided in 
three tools. The ‘Expr’ tool returns a downloadable list of the maximum (if multiple probes map to the 

Figure 4. Gene set enrichment analyses in a list differentially expressed genes using the GSEA tab. (A) Gene set enrichment analysis using the goseq 
tool of a list of differentially expressed genes obtained in the DEG tab. One of the three main Gene Ontologies (GO) can be selected for analysis at a 
time. After selection of a p-value, XTABLE (Exploring Transcriptomes of Bronchial Lesions) returns a downloadable list of GO with associated statistics. 
(B) Gene set enrichment analysis using the fgsea/MSigDB tool. This tool allows the selection of any collection included in MSigDB and returns a list of 
signatures with associated statistics. The example shows the selection of the C3_TFT_GTRD collection (Transcription Factor Targets annotated in the 
Gene Transcription Regulation Database).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Example of pathway analysis (PA tab) output for a gene list obtained with the DEG function.

https://doi.org/10.7554/eLife.77507
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same gene symbol) normalized expression values for the gene of interest in all samples (Figure 5A). 
The ‘Indv_Contrast’ function returns the differentially expressed gene analysis results including fold-
change and statistical significance values for a given gene in all groups of samples compared with a 
predetermined reference group (Figure 5B). Sample grouping and reference group depend on the 
study. The ‘Mult_Contrast’ function works similarly to the ‘Indv_Contrast’ function but allows merging 
of up to four groups of samples and the reference group for statistical analysis can be determined by 
the user. The example in Figure 5C shows the evolution of MYC expression in four groups of samples 
that represent normal, low-grade PMLs, high-grade PMLs, and invasive carcinomas (Figure 5C). The 
fold-changes and p-values are the result with the comparison with the ‘normal’ group (normal normo-
fluorescent, normal hypofluorescent, and hyperplasia) as the reference group (Figure 5C).

Figure 5. XTABLE (Exploring Transcriptomes of Bronchial Lesions) functions to implement analyses on individual genes (Gene tab) and user defined 
gene signatures (Signature tab). (A) The ‘Expr’ function (under the Gene tab) retrieves the normalized expression values for a gene of interest in all 
samples. (B) The ‘Indiv_Contrast’ tool compares the expression of a gene of interest in groups of samples with a predetermined group. In the example, 
the function compares the expression of MYC in all stages with the normal normofluorescent group in GSE33479. (C) The ‘Mult_Contrast’ tool enables 
the grouping of samples in up to four groups (contrasts) and statistical comparison with a reference group determined by the user. The example shows 
the analysis of MYC expression in four groups of samples from the GSE33479 cohort (normal, low-grade, high-grade, and invasive carcinomas). The 
‘normal’ group is set as reference group for statistical analysis. (D) Example of the use of the Heatmap tab to interrogate to visualize the expression of 
gene sets in premalignant lesions (PMLs). Gene sets can be defined by the user (as in the example) and are shown using the stage classification and 
entered manually or from a .csv file. Alternatively, the heatmap can be generated from a list of differentially expressed genes from the DEG tab or a 
selected number of genes filtered by variance. The three options can be selected in the scroll-down menu. In the example shown, the heatmap shows 
all microarray probes associated to each gene symbol. p-Values calculated using Welch’s t-test.

https://doi.org/10.7554/eLife.77507
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To facilitate the interrogation of biological processes driving PML progression, XTABLE also allows 
the interrogation of transcriptomic signatures using multiple functions. The Signature tab returns a list 
of normalized expression values and a graph with the signature scores (sum of log-normalized expres-
sion values) for a gene set determined by the user in all samples of the selected study.

The Heatmap tab returns a heatmap that displays the expression values in all samples in a selected 
study. The gene set shown in the heatmap can be selected using three options from the scroll-down 
menu. With the ‘Signature’ option, the user can manually enter or upload a list of genes. The example 
in Figure 5D shows a heatmap generated from the GSE33479 dataset with five transcriptional targets 
of SOX2, an important LUSC driver. The ‘DEG’ option automatically selects the list of genes differ-
entially expressed in the DEG tab. Finally, the ‘Variance’ option selects genes using a user-defined 
number of genes with the highest variance.

Assessment of the correlation between CIN signatures and progression 
potential
Two studies have highlighted the potential role of CIN as predictor of low-grade (van Boerdonk 
et al., 2014) and high-grade (Teixeira et al., 2019) PMLs progression in LUSC. XTABLE can be used to 
explore this correlation in the four cohorts, identify genes and pathways altered by CIN, and involved 
in driving it. Furthermore, XTABLE enables the user to carry out cross-comparisons between cohorts to 
identify high-confidence signals. One interesting example of this cross-comparisons is the correlation 
between CIN-scores and progression in different cohorts using the CIN-score and ROC tabs. Cohort 
GSE108124 focuses on CIS lesions with known progressive potential. As reported in that study (Teix-
eira et al., 2019), we found that the CIN5 signature segregates progressive and regressive lesions 
(AUC = 1) (Figure 6A, Figure 6—figure supplement 1), whereas CIN70 and CIN25 signatures are 
somewhat poorer predictors of progression (Figure 6—figure supplement 2) (AUC = 0.82 and 0.81, 
respectively). Apart from the varied performance of different CIN-scores, this difference can also be 
attributed to the lack of data about some of the genes in the sequencing output. Furthermore, cohort 
GSE114489, which also contains dysplastic samples with known progression potential, demonstrates 
that although signatures are elevated in persistent dysplasias, neither CIN5 (AUC = 0.72) (Figure 6B, 
Figure 6—figure supplement 3) nor CIN70 (AUC = 0.74) and CIN25 (AUC = 0.73) (Figure 6—figure 
supplement 4) could accurately segregate persistent from regressive samples as efficiently as CIN5 in 
the GSE108124 cohort. Similarly, CIN-scores did not accurately segregate regressive from persistent/
progressive samples by progression status in the discovery cohort of GSE109743 (Figure  6C, 
Figure 6—figure supplement 5). A similar result was found with the validation cohort of GSE109743 
(Figure 6—figure supplement 6). However, in cohorts with multiple stages represented (GSE109743 
and GSE33479), there was a clear increase in CIN-scores with increasing PML grade (Figure 6D and E, 
Figure 6—figure supplement 7), which is consistent with the increased risk of malignant progression 
in high-grade lesions. In summary, we found that CIN-scores (specifically CIN5) are good predictors 
of malignant progression in CIS (GSE108124). In GSE114489, we observed an increase in the CIN5 
score in persistent dysplasias but the discrimination between persistent and regressive dysplasias was 
poorer. In GSE109743, we did not observe significant differences between progressive/persistent 
PMLs and regressive lesions. This different performance of CIN-scores in different cohorts can be 
attributed to multiple factors both technical and biological. The most important differences are the 
differing definitions of progression status, and that GSE108124 focuses on CIS lesions, a high-grade 
precursor of invasive LUSC, whereas the other cohorts focus on earlier lesions (GSE114489) or combi-
nations of different stages (GSE109743). Additionally, microarray analysis was carried out with RNA 
extracted from microdissected PMLs in cohort GSE108124 providing an enriched epithelial signal.

Mapping the evolution of the most relevant pathways involved in LUSC 
using XTABLE
Inactivation of the tumour suppressor genes TP53 and CDKN2A (Figure 7A) are the most frequent 
somatic events in LUSC (Jamal-Hanjani et al., 2017; The Cancer Genome Atlas Research Network, 
2012). Other somatic alterations in driver genes are found at a lower frequency but often target the 
same pathways in different ways (Figure 7A; Jamal-Hanjani et al., 2017; The Cancer Genome Atlas 
Research Network, 2012). The squamous differentiation, PI3K/Akt, and oxidative stress response 
are the most frequently targeted pathways in LUSC (The Cancer Genome Atlas Research Network, 
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Figure 6. Association of carcinomas in situ (CIN)-scores with progression status and stage in the four cohorts of XTABLE (Exploring Transcriptomes of 
Bronchial Lesions). (A) CIN5 score in regressive (Re) and progressive (Pr) carcinomas in situ (CIS) lesions from cohort GSE108124. (B) CIN5 scores in stable 
non-dysplasias (StND), progressive non-dysplasias (PrND), regressive dysplasias (ReD), and persistent dysplasias (PerD) from cohort GSE114489. (C) CIN5 
scores in Re, normal-stable (NSt), and progressive/persistent (Pr/Per) premalignant lesions (PMLs) from cohort GSE109743. (D and E) Evolution of CIN-

Figure 6 continued on next page
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2012). The most frequent alteration targeting the squamous differentiation pathway is SOX2 amplifi-
cation, although inactivations of NOTCH proteins have also been proposed to target this pathway as 
they are mutually exclusive with SOX2 amplification. A similar pattern of mutually exclusive somatic 
alterations targeting the same pathway has also been observed in the PI3K/Akt and oxidative stress 
response pathways (Figure 7A; The Cancer Genome Atlas Research Network, 2012). The role of 
these pathways in the transition between the LUSC developmental stages has not been addressed 
to date. The main reason for this is the paucity of genomic characterizations of PMLs and the lack of 
preclinical models of PMLs. Using XTABLE (Signature tab) to interrogate published transcriptional 
signatures correlated with these pathways can shed information about the stages at which they 
become active, and therefore what their potential role is in LUSC progression. To map changes in the 
activation of these three pathways to LUSC developmental stages, we use pre-designed transcriptional 
signatures from the MSigDB collections (Subramanian et al., 2005; Liberzon et al., 2011; Liberzon 
et al., 2015). Namely, the SOX2_BENPORATH (squamous differentiation) (Ben-Porath et al., 2008), 
HALLMARK_PI3K_AKT_MTOR_PATHWAY (PI3k/AKT pathway), and WP_NRF2_PATHWAY (oxidative 
stress response) signatures (Figure 7B, C and D, respectively). When GSE33479 was interrogated, the 
signature scores of the three pathways increased significantly in either moderate or severe dysplasias 
when compared with normal normofluorescent mucosa. No significant increases were detected in 
mild dysplasias or earlier lesions. Similar results were observed with the GSE109743 cohort except for 
the WP_NRF2_PATHWAY (Figure 7—figure supplement 1). In this pathway, an increase of the signa-
ture was detected only in mild dysplasias compared with normal samples, and no significant changes 
were detected in any other PMLs stages.

We also interrogated the MSigDB collection to investigate the stages wherein the activation 
of CDK4/cyclin-D1 activity is detected using an associated transcriptional signature. The CDK4/
cyclin-D1 axis controls the transition through the G1-phase of the cell cycle and is frequently altered 
in LUSC by multiple mechanisms such as CDKN2A inactivation (which encodes the p16INK4a tumour 
suppressor and inhibits the activity of the CDK4/cyclin-D1 complexes and E2F transcriptional activity), 
and cyclin-D1 amplification. Activation of transcriptional signatures associated with these cell cycle 
regulators (MOLENAAR_TARGETS_OF_CCND1_AND_CDK4_DN and HALLMARK_E2F_TARGETS) 
can be used to monitor CDK4/cyclin-D1 dysregulation (Molenaar et al., 2008). The CDK4/cyclin-D1 
signature showed a significant increase in moderate dysplasias and later stages in cohort GSE33479 
(Figure 7E) and in mild dysplasias and later stages in the GSE109743 (Figure 7—figure supplement 
1). The increase of E2F signature was already detectable in metaplasias and later stages (Figure 7F) 
in the GSE33479 cohort, whereas in the GSE109743 cohort the increase in the E2F signature was 
observed starting in mild dysplasias (Figure 7—figure supplement 1).

Overall, these results show that the activity of squamous differentiation, PI3K/Akt, and pathways 
start in the transition between high- and low-grade lesions (Figure 1), typically moderate and severe 
dysplasias, indicating a role of these pathways in this transition, whereas their function in earlier 
stages (e.g., transition from normal epithelium to low-grade PMLs) is likely to be more limited. Our 

scores in lung squamous cell carcinoma (LUSC) developmental stages for cohorts GSE109743 and GSE33479. N: normal; NN: normal normofluorescent; 
NH: normal hypofluorescent; Hy: hyperplasia; Me:metaplasia; MD: mild dysplasia; MoD: moderate dysplasia; SeD: severe dysplasia; CIS: carcinoma in 
situ; IC: invasive carcinoma. Boxplots show median and upper/lower quartile. Whiskers show the smallest and largest observations within 1.5× IQR.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Receiver operating characteristic (ROC) analysis of CIN5 as predictor of carcinomas in situ (CIS) progression in the GSE108124 
cohort.

Figure supplement 2. Analysis of CIN70 and CIN25 scores as predictors of carcinomas in situ (CIS) progression in GSE108124.

Figure supplement 3. Receiver operating characteristic (ROC) analysis of CIN5 as predictor of premalignant lesion (PML) progression in the GSE114489 
cohort.

Figure supplement 4. Analysis of CIN70 and CIN25 scores as predictors of premalignant lesion (PML) progression in GSE114489.

Figure supplement 5. Analysis of CIN70, CIN25, and CIN5 scores as predictors of premalignant lesion (PML) progression in GSE109743.

Figure supplement 6. CIN5 scores in the GSE109743 cohort with samples classified by progression status.

Figure supplement 7. Evolution of CIN5 scores by premalignant lesion (PML) stage in the validation cohort of GSE109743.

Figure 6 continued
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observations with the CDK4/cyclin-D1 and E2F signatures indicate that the onset of this pathways 
start in earlier stages (metaplasias and mild dysplasias).

Discussion
In this report, we have described XTABLE, an open source bioinformatic tool to explore gene expression 
in LUSC PMLs using four different transcriptomic datasets. The most novel aspect of this application is 
the emphasis on preinvasive disease (to our knowledge, the first bioinformatic tool focusing on PMLs), 
and the possibility of multiple sample stratifications by parameters that correlate with high risk of malig-
nant progression (stage, progression status, and CIN). Treating lung cancer is complex. Chemotherapies, 
radiotherapy, targeted therapies, and immunotherapies save lives. However, the progress in lung cancer 
patient survival during the last 20 years is disappointing (National Cancer Institute and DCCPS, 2018). 
Redirecting research efforts to prevent lung cancer and to detect its more treatable premalignant stages 

Figure 7. Mapping the evolution of the most relevant lung squamous cell carcinoma (LUSC) pathways to the LUSC developmental stages using 
published MSigDB transcriptional signatures. (A) Diagram showing the most important pathways involved in LUSC and the genes involved in such 
pathways that are found genetically altered in LUSC tumours. (B) Evolution of the SOX2 (the most frequent driver of the squamous differentiation 
pathway) transcriptional signature (SOX2_BENPORATH) during LUSC progression (GSE33479 cohort). (C) Evolution of the PI3K/Akt pathway during 
LUSC progression (HALLMARK_PI3K_AKT_MTOR_SIGNALING). (D) Evolution of the NRF2 (WP_NRF2_PATHWAY) transcriptional signature (correlated 
with the oxidative stress response) during LUSC progression. (E) Evolution of a transcriptional signature correlated with cyclin-D1 and CDK4 
(MOLENAAR_TARGETS_OF_CCND1_AND_CDK4_DN) during LUSC progression. CDKN2A alterations in LUSC lead to the inactivation of the p16INK4a, 
a CDK4 inhibitor. (F) Evolution of the expression of E2F targets (HALLMARK_E2F_TARGETS). Sample size: NN n=13, NH n=14, Hy n=15, Me n=15, MD 
n=13, MoD n=13, SeD n=12, CIS n=13, IC n=14. Boxplots show median and upper/lower quartile. Whiskers show the smallest and largest observations 
within 1.5× IQR. *p<0.05, **p<0.01, ***p<0.001, p<0.0001 (Welch’s t-test).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Evolution of five transcriptional signatures in cohort GSE109743.

https://doi.org/10.7554/eLife.77507


 Tools and resources﻿﻿﻿﻿﻿﻿ Cancer Biology | Computational and Systems Biology

Roberts et al. eLife 2023;12:e77507. DOI: https://doi.org/10.7554/eLife.77507 � 15 of 21

is the most efficient way to prevent lung cancer deaths to date. XTABLE offers researchers the possibility 
of accessing the most relevant transcriptomic databases on LUSC PMLs to assist in the understanding of 
PML biology and identify biomarkers for LUSC early detection. Biomarker identification, investigating the 
evolution of signalling pathways in multiple developmental LUSC stages, identification of immunomodu-
latory signals, changes in transcriptional signatures, and exploring the causes and consequences of CIN in 
PMLs are amongst the multiple examples of promising applications of XTABLE for basic and translational 
biologists.

Whereas multiple open-source applications for generic processing of transcriptomic data have been 
developed since the advent of microarray and RNAseq technologies, none of those applications inte-
grate analysis capabilities directed to prevention and early detection discovery research. Furthermore, 
these applications lack versatility for downstream analysis, automatically apply data transformation (log-
transformation) to dataset that do not require it, lack of update for years, compatibility issues with current 
operating systems, require reformatting and renaming of expression datasets (not practical for large 
sample numbers), and do not evaluate the diagnostic performance of classifiers such as ROC analysis. 
XTABLE overcomes these limitations and unifies different packages in a manner that facilitates precan-
cerous biology, prevention, and early detection research.

XTABLE also contributes to a more open, accessible, and inclusive science. Research laboratories 
often have restricted access to bioinformatic support due to funding constraints or lack of adequate 
collaborations. This limitation can be a major hurdle in the competitiveness of research groups as it may 
prevent hypothesis generation, validation of experimental results in patient cohorts, or acquisition of 
preliminary results. XTABLE and similar applications can contribute to addressing those disadvantages 
with an accessible and versatile platform for gene expression analysis. This application also contributes 
to the open science philosophy as it promotes the dissemination of data, accessibility, and transparency. 
Although XTABLE is unlikely to offer all the possibilities of analysis required by the scientific community, 
the code can be obtained by the users to adapt it to their research questions. Additionally, XTABLE allows 
the download of results that can be subject to additional downstream analyses.

Although integrative analyses of two or more datasets as well as integration of other genomic plat-
forms would be desirable capabilities of XTABLE, the different nature of the studies, methodologies, 
and platforms make these integrations hardly achievable. For instance, stratifications that apply to all 
datasets and setting up the same thresholds for ROC analysis is not possible. Moreover, implementing 
separate analyses is the most scientifically sound alternative to prevent wrong conclusions. Nevertheless, 
by analysing the four datasets under a unified interface, and at the same time, implementing analyses on 
individual datasets, XTABLE achieves an optimal balance between clarity, speed of analysis, user friendli-
ness, and scientific rigor while avoiding overcomplications. Additionally, only one study (GSE108105) also 
published genomic and epigenomic data.

Another potential limitation of XTABLE is that it cannot be used to interrogate future datasets in a 
simple manner for non-computational scientists. This limitation arises from the fact that the characteristics 
of future studies are hardly predictable, which hampers the design of stratification and analysis options. 
However, the open-source nature of this application allows the future modification of the code to add 
new datasets by other users. Moreover, the analysis modules for each of the current databases provide a 
template that will be re-coded to integrate future databases.

Our analysis of CIN signatures and their correlation with the known progression potential of PMLs 
is one of the examples of the use of XTABLE to obtain a wider view of LUSC PML biology. CIN5 was 
a good predictor of CIS progression in the GSE108124 study, as already described by the authors of 
the study (Teixeira et al., 2019). However, CIN5 did not perform as well in other studies. Conceivably, 
the most plausible reason for this discrepancy is the different definition of progression status in the 
four studies. Whereas GSE108124 provides a binary classification of PMLs (progressive and regressive), 
the other studies show a more complex classification that includes progressive and persistent lesions 
under the same category. The endpoint in the definition of the progression status also differs between 
studies. Specifically, the endpoint in GSE108124 is progression to invasive LUSC whereas the other 
studies define progression as transition to a higher grade. Conceivably, CIN might not play the same 
role in the transition between PMLs as it does in malignant transformation. Additionally, GSE108124 
focuses on CIS, the precursor lesions of invasive carcinomas, and uses microdissected samples. The 
other two studies with progression status information focus on different stages and do not perform 
enrichment of the tumour component. GSE114489 investigates dysplasias, an earlier LUSC stage and 
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lacks further subdivision into mild, moderate, and severe dysplasic lesions. This limitation might result 
in data with more noise and poorer correlation with progression status. Nevertheless, this cohort did 
show an increase in CIN5 signature in persistent dysplasias when compared with regressive lesions, a 
difference that is not observed in GSE109743 (a cohort that does not separate PMLs by stage). These 
discrepancies point at several limitations of the use of CIN and its associated signatures as surrogates 
of progression potential. The use of CIN and more specifically CIN-scores as a bona fide predictor of 
progression might be limited to microdissected samples and CIS lesions. For example, the presence 
of tumour stroma could result in an underestimated CIN-score. Additionally, CIS lesions are the most 
advanced premalignant stage and show the highest levels of CIN5 signatures, thereby contributing to 
a higher CIN-related signal. Comparisons with microdissected PMLs of earlier stages are necessary to 
address the extent of these limitations.

Regardless, CIN gene expression signatures present a very robust correlation with genomic instability 
indexes in cancer, and specifically in lung cancer (Carter et al., 2006). Although we have shown that the 
correlation of CIN signatures with progression potential varies between databases, they can be used to 
investigate other biological questions such as identification of CIN-tolerance and CIN-driver genes, iden-
tification of changes in the immune microenvironment associated with CIN (in light of the new role of CIN 
in modulating tumour immunity Tijhuis et al., 2019), and interrogation of genes of interest for the user 
in CIN-high vs. CIN-low PMLs.

Using XTABLE, we have mapped the most important signalling pathways targeted in LUSC to 
the developmental stages. We found that the onset activation of squamous differentiation, PI3K/Akt 
pathways occur in the transition from low- to high-grade PMLs. Comprehensive genomic character-
izations of PMLs have not been undertaken so far, and therefore, we are not able to map the onset 
of LUSC pathways with the genomic profiles of each premalignant stage. However, our observations 
suggest that the genomic alterations targeting those pathways should be more frequent in high-grade 
PMLs than low-grade. Another explanation is that those mutations are present in low-grade PMLs 
but their effect on the pathways is only unleashed in the transition to high-grade lesions. Co-ocur-
ring somatic alterations and microenvironment changes could explain this. Nevertheless, our results 
strongly indicate that squamous differentiation and PI3K/Akt pathways are unlikely to play a role 
in the earliest developmental stages (hyperplasias, metaplasias, and mild dysplasias). On the other 
hand, our observations with the CDK4/cyclin-D1 and E2F signatures indicate an earlier onset (meta-
plasias and moderate dysplasias). Both signatures can be influenced by CDKN2A inactivation and 
cyclin-D1 (CCND1) amplification, two alterations frequently observed in LUSC, and known to override 
oncogene-induced senescence (Serrano et al., 1997). It is conceivable that CDKN2A inactivation and 
CCND1 amplification occur earlier than activation of oncogenic in order to prevent oncogene-induced 
senescence. For instance, SOX2 overexpression has a negative effect in cell fitness in multiple exper-
imental scenarios (Cho et al., 2013; Correia et al., 2017; Cox et al., 2012; Wuebben et al., 2016). 
Early activation of the CDK4/cyclin-D1 pathway could be key to avoid this toxicity in LUSC. A similar 
scenario is also likely to occur with PI3K/Akt signalling, as this pathway needs to be exquisitely regu-
lated to avoid senescence (Astle et al., 2012). However, mechanisms that modify CDK4/cyclin-D1 
and E2F activities independently of CDKN2A inactivation cannot be ruled out as multiple oncogenic 
pathways can regulate the cell cycle. Furthermore, the existence of CDKN2A inactivation in low-grade 
PML is not known.

The activation of the squamous differentiation, PI3K/Akt pathways in high-grade PMLs could be very 
useful as biomarkers to develop new modalities of early detection using multiple approaches. High-grade 
PMLs frequently undergo malignant progression (Ishizumi et al., 2010) and therefore, detection of these 
lesions and removal is an optimal strategy to prevent deaths by LUSC. Design of appropriate molec-
ular probes and theragnostic technologies that identify lesions with high-level pathway activation, and 
secreted proteins that are associated with those pathways are amongst the strategies to exploit pathway 
activation in early detection.

Finally, the aim of this article is not to prioritize any of the studies included in XTABLE, but to provide a 
tool for the simple and quick analysis of a large amount of biologically relevant data on PML biology. Each 
study has its own advantages and limitations. Therefore, the user is ultimately responsible for choosing 
the datasets that are more adequate to interrogate their research questions, compare results between 
databases considering the different scientific contexts of each study, and interpret them in light of the 
different designs of each study.

https://doi.org/10.7554/eLife.77507
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Materials and methods
XTABLE download and installation
XTABLE can be downloaded from the GitLab repository (https://gitlab.com/cruk-mi/XTABLE) and it 
requires the previous installation of RStudio. Copy the commands, paste them on the RStudio console, 
and run the command (Video 1).

XTABLE packages and construction
Bioconductor package GEOquery (2.54.1) was used to retrieve the data and the Bioconductor package 
Biobase (2.46.0) used to extract the gene expression values for microarray datasets. The Bioconductor 
package limma (3.42.2) was used to generate differentially expressed gene analysis results. Biocon-
ductor packages AnnotationDbi (1.48.0) and ​org.​Hs.​eg.​db (3.10.0) were used to retrieve additional 
gene IDs. Additional gene IDs were retrieved from Ensembl BioMart website (https://www.ensembl.​
org/biomart/martview/) with Ensembl Genes 104 dataset and Human Genes GRCh38.p13 to generate 
four mapping files with the following attributes: ‘Gene stable ID’ and ‘AGILENT WholeGenome 4×44k 
v1 probe’; ‘Gene stable ID’ and ‘Transcript stable ID’; ‘Gene stable ID’ and ‘Gene name’; ‘Gene stable 
ID’ and ‘NCBI gene (formerly Entrezgene) ID’ for GSE33479. For GSE114489, a file containing the 
attributes ‘Gene stable ID’ and ‘AFFY HuGene 1 0 st v1 probe’ was downloaded. The Bioconductor 
package edgeR (3.28.1) was used to calculate CPM values. R package pROC (1.17.0.1) was used to 
calculate AUC and generate ROC curves. Gene set enrichment analysis and pathway analysis were 
performed using Bioconductor packages ideal (1.10.0), fgsea (1.14) with MSigDB (https://www.gsea-​
msigdb.org/gsea/msigdb/collections.jsp) gene set collections (7.1), limma (3.42.2), pathview (1.26.0), 
enrichR (3.0), gage (2.36.0) with gageData (2.24.0), ReactomePA (1.30), progeny (1.8.0), and dorothea 
(0.99.0).

Deconvolution analysis was performed for microarray data using estimate (1.0.11) and for RNAseq 
data using imsig (1.1.3). imsig requires filtering out genes with low variance which was performed with 
the package matrixStats (0.59.0). R package stats (3.6.0) used to generate PCA data. ggplot2 (3.3.3), 
pheatmap (1.0.12), RColorBrewer (1.1–2) were used for making plots and ggpubr (0.4.0) was used to 
perform Welch’s t-test. tidyr (1.1.3), tibble (3.1.2), dplyr (2.0.6), and magrittr (2.0.1) were used for general 
data processing and formatting. Code was written using RStudio Workbench (1.4.1717.3) using R (4.0.3).

Transcriptional signatures
To investigate the evolution of LUSC pathways, we downloaded the following gene sets from the 
Molecular Signatures Database (MSigDB v7.5.1):

BENPORATH_SOX2_TARGETS (https://www.gsea-msigdb.org/gsea/msigdb/cards/BENPORATH_​
SOX2_TARGETS.html).

HALLMARK_PI3K_AKT_MTOR_SIGNALING (https://www.gsea-msigdb.org/gsea/msigdb/cards/​
HALLMARK_PI3K_AKT_MTOR_SIGNALING.html).

WP_NRF2_PATHWAY (https://www.gsea-msigdb.org/gsea/msigdb/cards/WP_NRF2_PATHWAY.​
html).

MOLENAAR_TARGETS_OF_CCND1_AND_CDK4_DN (https://www.gsea-msigdb.org/gsea/​
msigdb/cards/MOLENAAR_TARGETS_OF_CCND1_AND_CDK4_DN.html).

HALLMARK_E2F_TARGETS (https://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_E2F_​
TARGETS.html).

The signatures were manually curated to replace unrecognized gene symbols with alternative 
symbols used in each cohort. The signature scores returned by the XTABLE were calculated as the 
sum of log-normalized expression values in each cohort.
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The following previously published datasets were used:
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Mascaux C 2014 Molecular characterisation 
of the multistep process 
of lung squamous 
carcinogenesis by gene 
expression profiling

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE33479

NCBI Gene Expression 
Omnibus, GSE33479

Beane JE, Spira A 2019 Bronchial premalignant 
lesions have distinct 
molecular subtypes 
associated with future 
histologic progression

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE109743

NCBI Gene Expression 
Omnibus, GSE109743

Merrick D 2018 Altered Cell-Cycle Control, 
Inflammation and Adhesion 
in High-Risk Persistent 
Bronchial Dysplasia

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE114489

NCBI Gene Expression 
Omnibus, GSE114489

Teixeira VH 2019 Deciphering the genomic, 
epigenomic and 
transcriptomic landscapes 
of pre-invasive lung cancer 
lesions to determine 
prognosis

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE108124

NCBI Gene Expression 
Omnibus, GSE108124
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