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SUMMARY

The majority of newly diagnosed prostate cancers
are slow growing, with a long natural life history.
Yet a subset can metastasize with lethal conse-
quences. We reconstructed the phylogenies of 293
localized prostate tumors linked to clinical outcome
data. Multiple subclones were detected in 59% of
patients, and specific subclonal architectures asso-
ciate with adverse clinicopathological features. Early
tumor development is characterized by point muta-
tions and deletions followed by later subclonal ampli-
fications and changes in trinucleotide mutational
signatures. Specific genes are selectively mutated
prior to or following subclonal diversification,
including MTOR, NKX3-1, and RB1. Patients with
low-risk monoclonal tumors rarely relapse after pri-
mary therapy (7%), while those with high-risk poly-
clonal tumors frequently do (61%). The presence of
multiple subclones in an index biopsy may be neces-
sary, but not sufficient, for relapse of localized pros-
tate cancer, suggesting that evolution-aware bio-
markers should be studied in prospective studies
of low-risk tumors suitable for active surveillance.

INTRODUCTION

Prostate cancer remains themost common non-skinmalignancy

in men. It is characterized by a long life history that leads to
extensive intra-tumoral heterogeneity and subclones with wide

genetic divergence at initial diagnosis (Boutros et al., 2015;

Cancer Genome Atlas Research Network, 2015; Cooper et al.,

2015; Fraser et al., 2017). Prostate cancer is curable when local-

ized. Nevertheless, patients that harbor occult metastatic dis-

ease or have aggressive tumors with poor clinical outcome

have genomic architectures comprising few recurrent mutations,

specific somatic copy number aberrations and differential epige-

netics (Fraser et al., 2017). There is some preliminary evidence,

from small multi-region sequencing studies, that tumors that

have escaped the gland show clonal adaption (Gundem et al.,

2015). However, it remains unclear how tumors evolve prior to

initial diagnosis and therapy. For example, while tumors initiated

in the presence of germline BRCA2 mutations harbor a unique

mutational profile, it is unclear if other germline alleles influence

tumor development (Taylor et al., 2017). It is natural to hypothe-

size that more genetically diverse tumors will have worse out-

comes, but the clinical consequences of subclonal architecture

and its impact on biomarkers remain unclear (Zhang et al., 2014).

Tumorigenesis proceeds through a sequential series of muta-

tional events, some incremental and others catastrophic (Notta

et al., 2016; Stephens et al., 2011; Vogelstein et al., 1988).

Some of these selection and adaption events confer a selective

growth advantage by overcoming micro-environmental and

genetic selective pressures including the presence of intra-tu-

moral hypoxia and escaping telomere crisis. Spatio-genomic

studies that have sequenced multiple regions of a single tumor

have suggested that this process leads to most solid tumors

being comprised of multiple clones (Gerlinger et al., 2012;

McPherson et al., 2016; Nik-Zainal et al., 2012). Clones can

harbor mutations common to all tumor cells (i.e., clonal or trunk
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Figure 1. Subclonal Mutational Architecture

of Localized Prostate Cancer

(A) The landscape of localized prostate cancer is

shown for all 293 samples in the study. Data for

mutational burden, CNAs, fusions, translocations,

inversions, and SNVs are shown along with clinical

information. Barplots on the right indicate the

frequency of each event in the cohort.

(B) The diversity and the frequency in architecture

of prostate cancer evolution are summarized.

Tumors are divided into two groups: monoclonal

with only one clonal population and polyclonalwith

at least one subclonal population. Mutational

density is represented by the edge lengths:

numbers of SNVs (yellow) and CNAs (as PGA,

blue). Cancer cell fraction is given as the node

diameter for each subclone, and dashed circles

show one standard deviation of the subclone CCF

across all tumors with identical trees. Represen-

tative trees are shown (see the STAR Methods).

See also Figure S1, Table S1, and Data S1.
mutations), and mutations specific to one evolutionary branch of

the tumor (i.e., subclonal or branch mutations). Because only

small numbers of patients have received spatio-genomic

profiling to date, themolecular origins and clinical consequences

of tumor subclonality remain unclear. Previous studies of pros-

tate cancer clonality using spatial sampling together comprise

fewer than 20 patients, most with incurable metastatic disease

selected by castrate resistance; no studies have systematically

addressed subclonality in potentially curable tumors.

To address these issues and to explicitly evaluate the effects

of tumor subclonality on the risk of relapse after initial definitive

treatment, we reconstructed the subclonal architectures of 293

localized prostate tumors. We identified multiple cancer cell

populations in 59% of specimens. Tumors are initially driven

by clonal accumulation of point-mutations and genomic dele-

tions, but after branching copy number gains become more

common. Mutational stresses change temporally over the

course of disease progression, with frequent changes in the

pattern of trinucleotide signatures. Most prostate cancer driver

mutations are clonal, but a subset preferentially occurs subclo-

nally. Critically, prostate cancer clonality has clear clinical utility:

patients with monoclonal tumors have extremely low rates of

relapse. Our findings show that existing prognostic biomarkers

can be confounded by subclonality, but when used strategically

to enhance biomarker development, more accurate and person-

alized tests can be developed for intensification/deintensifica-

tion of treatment for curable cancers.
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RESULTS

The Subclonal Architecture of
Localized Prostate Cancer
To understand the subclonal architecture

of localized prostate tumors, we studied

293 tumors from patients diagnosed

with localized prostate cancer (Table

S1). All tumors were treatment naive at

the time of sampling, and 97% of the
cohort was intermediate-risk by NCCN-criteria. Patients were

treated with either surgery (radical prostatectomy) or image-

guided external beam radiotherapy, and samples from the index

lesion and paired normal (blood) samples were whole-genome

sequenced (WGS). In addition to the 200 tumors we analyzed

previously (Fraser et al., 2017), we analyzed an additional 93

tumor/normal whole-genome pairs (coverage = 74x ± 23x; num-

ber of single nucleotide variants (SNVs) = 609 ± 475; number of

CNAs = 31 ± 27; mean ± SD; Figure 1A). For each patient, we

reconstructed their tumor’s subclonal profile by identifying

somatic SNVs and subclonal copy-number aberrations (CNAs)

and then integrating these on evolutionary trees (Figures S1A–

S1C; Data S1). To verify the robustness of our subclonal CNA

predictions, we contrasted them with reconstructions made by

two alternative tools (Figure S1D; Table S1) and different muta-

tion-calling pipelines (Figures S1L–S1O). We further validated

our methodology in a transplantable cell-line model system (Fig-

ures S1H–S1K) and confirmed that subclonal reconstructions

were not biased by sequencing site (Figure S1E) nor by

sequencing coverage (Figures S1F and S1G). Of these 293

tumors, 41% had only clonal mutations (termed monoclonal

tumors) detectable at our sequencing depth in the index lesion

(Figure 1B; Table S1). The remaining 59% showed evidence of

multiple tumor populations originating from a single ancestral

clone (termed polyclonal). Of the polyclonal tumors, the majority

(135/174) were biclonal, with only two populations being de-

tected at the sensitivity of our sequencing depth and analytical



Figure 2. Clinical Correlates of Phylogenetic Features

(A) The correlation between clinical variables and tumorigenesis is explored using Spearman’s r. The background indicates the p value of the correlation, while

dot size and color gives the magnitude and direction of the correlation.

(B) Tumors in Gleason grade group >1 had a lower proportion of CNAs in the trunk compared to Gleason grade 1 tumors (Mann-Whitney U test).

(C) Further, tumors with more than two subclones have higher serum abundances of PSA before treatment (Mann-Whitney U test).

See also Figure S2 and Table S2.
pipelines, while three populations were detected in 35 tumors.

The remaining tumors showed characteristics consistent with

being polytumors, suggestive of patients with multiple indepen-

dent primary tumors, as observed in multi-region sequencing

studies (Boutros et al., 2015; Cooper et al., 2015). However,

reconstruction of these is challenging, and we therefore exclude

these subclonal reconstructions in our analysis to remain con-

servative. Both monoclonal and polyclonal tumors appear to

have evolved from a single ancestral cell, but the latter are distin-

guished by localized subclonal diversification since transforma-

tion of this founder cell. The bulk of analyses thus proceeded on

a cohort of 289 consistently analyzed and subclonally recon-

structed tumors (Data S1).

To assess whether these tumor phylogenies were associated

with clinical characteristics, we tested their association with the

prognostic variables of prostate-specific antigen (PSA), tumor

grade (Gleason groups), and T-category, as well as age and

E26 transformation-specific (ETS) fusion status. As a positive

control (Lalonde et al., 2014), tumors with elevated Gleason

groups showed elevated proportions of the genome copy-num-

ber altered (PGA; p = 4.273 10�2; Mann-Whitney U test; Figures

2A, 2B, S2A, and S2B; Table S2). Interestingly, tumors with an

increased number of subclones have higher serum abundances

of PSA prior to treatment (8.07 3 10�3; Kruskal-Wallis test; Fig-

ure 2C). These data suggest that clonality is a separate entity to

current prognostic factors.

Mutational Timing and Mutational Processes
Next, we sought to quantify the mutational processes underly-

ing prostate tumorigenesis, and how these change over the

course of tumor evolution. We first compared the types of

mutations present in the trunk of tumors to those that occur

in their branches. Most somatic point mutations occur in a

tumor’s trunk (75.4% ± 4.0% of SNVs); by contrast, CNAs

were equally split between the trunk and its branches, with

an average of 54.5% ± 5.4% of PGA occurring in the trunk

(p = 1.33 3 10�5; Mann-Whitney U test; Figure 3A). CNAs

occurring early in tumor evolution were strongly biased toward
deletions, with 84.0% ± 4.0% of all losses occurring in the

trunk, compared to 63.3% ± 6.2% of gains (p = 7.84 3 10�9 ;

Mann-Whitney U-test; Figure S2C). Trunk CNAs were larger

than branch CNAs (11.5 Mbp versus 6.15 Mbp; p < 2.20 3

10�50; Mann-Whitney U test; Figure S2D). Thus the initial evolu-

tion of prostate cancer involves accumulation of SNVs (likely

passenger mutations) and deletions, while later clonal diver-

gence involves arm-length and focal gains.

To assess themutational processes driving this early accumu-

lation of somatic SNVs, we quantified the contribution of different

trinucleotide mutation signatures (Alexandrov et al., 2013). For

each patient, we sorted SNVs by their cancer cell fractions

(CCFs) corrected by copy number, divided them into bins of

400 and estimated mutational timing in a sliding window manner

(see the STAR Methods). Mutational signatures were fit at each

bin using a multinomial mixture model, focusing on the six signa-

tures most strongly present in our cohort (Figure S3A), which

include the aging (S1) and homologous recombination defi-

ciency signatures (S3) (Alexandrov et al., 2013). About half of

all patients (132/289) exhibited detectable changes in signature

exposure over the course of their tumor evolution, providing a

lower-bound on changes in themutational pressures at play (Fig-

ure 3B). We separated patients into six distinct sub-groups

based on the pattern of change (Figures 3B and S3B; Table

S1) and identified groups of patients showing large switches in

signature profiles over time, including decreases in the aging

signature (signature S1) and increases in the homologous

recombination deficiency signature S3 (Figure 3C; Table S3;

Data S1). In exploratory analyses, these changes were not corre-

lated to specific clinico-pathologic variables, although additional

larger cohorts will be needed to investigate this question.

Decrease in the activity of the aging signature S1 may reflect

an elevation in other mutagenic stresses over time rather than

an actual decrease in the specific functioning of that mutagenic

process. By contrast, increase in the activity of S3 is preferen-

tially associated with CNA loss of BRCA2 (odds ratio [OR]

3.37, 95% confidence interval 0.85–11.57; p = 0.043; Fisher’s

exact test). This finding is concordant with increased BRCA
Cell 173, 1003–1013, May 3, 2018 1005



Figure 3. Evolution of Mutational Processes in Prostate Cancer

(A) The acquisition of mutations during tumor evolution is differentiated. Differences in the proportion of SNVs and PGA emerging from trunk are tested with a

Mann-Whitney U test.

(B) The six most prevalent signatures in our cohort and their exposure changes from the first time point to the last are displayed. Signatures are clustered into six

groups, and samples are ordered by their signature changes.

(C) Exemplars with varying exposures are shown. Uncertainty was evaluated by bootstrapping sets of mutations and re-computing exposure estimates 30 times.

The SD of the exposures at each time point is shown as the shaded area around the trajectory. Signatures whose error bars overlap at all time points are deemed

to have no change. Signature changepoints are highlighted using black bars with a shaded background.

See also Figure S3 and Table S3.
loss and DNA repair gene dysfunction in metastatic castrate-

resistant prostate tumors (Robinson et al., 2015).

Molecular Hallmarks of Subclonality
Wehypothesized that the different mutational processes present

in the trunk and branch of prostate tumors would reflect distinct

sets of driver mutations occurring in these two different phases

of tumor evolution. We considered all genes recurrently affected

by functional somatic SNVs (genes with nonsynonymous, stop-

loss, stop-gain and splice-site SNVs in at least 2% of patients,

or previously identified as recurrently mutated by Fraser et al.

[2017]), independent of driver significance (Tables S1 and S4).

Some SNVs were strictly clonal (i.e., found in tumor trunks),

including the well-known prostate cancer genes FOXA1 and
1006 Cell 173, 1003–1013, May 3, 2018
ATM (Figures 4 and S4A; Table S4). By contrast, others were

mutated both clonally and subclonally (e.g., TP53 and SPOP).

We attempted to identify non-coding SNVs with trunk versus

branch bias, but were underpowered, given the low recurrence

rate of non-coding SNVs (Figure S4B; Table S4).

As prostate cancer is a C-class tumor (Fraser et al., 2017), we

focused on the evolution of CNA profiles. We identified specific

CNAs strongly enriched in the trunk of the tumor (Tables S1

and S5), including the hallmark NKX3-1 deletion found in

126/289 patients and occurring in the trunk 89.7% of the time

(q = 4.55 3 10�10; Pearson’s c2 test). Other genes strongly

enriched for clonal deletion included loss of RB1 (87% clonal;

q = 2.403 10�4; Pearson’s c2 test) and a locus on chromosome

16 containing the tumor-suppressor MAF (66/75 in trunk;



Figure 4. Evolution of Recurrent SNV Mutations

The timing of occurrence of recurrent SNV mutations in prostate cancer is evaluated. Mutations are classified as trunk or branch according to their time of

occurrence. Trunk mutations distinguish all cancerous cells from the normal population, while branch mutations develop after clonal establishment. Patients are

ordered by total number of functional mutations (i.e., missense and nonsense), while recurrent SNVs are sorted by proportion defined as trunk and overall

frequency. The cancer cell fraction measures the proportion of the tumor population that harbors the mutation.

See also Figure S4 and Table S4.
q = 4.06 3 10�5; Pearson’s c2 test), which is linked to ETS-rear-

ranged tumors (Demichelis et al., 2009). Other genes were sub-

ject to recurrent subclonal CNAs, including mediators of cellular

response and signaling (e.g.,MTOR, TP73); regulators of growth

and apoptosis (e.g., BAD, VEGFB); and other cancer driver

genes (e.g., CCND1, CCNE1, JUNB, TSC1, TSC2, and KEAP1;

Figure 5A; Tables S1 and S5). Several recurrent clonal tumor

suppressor losses, including RB1, APC, and CDKN1B,

resulted in clear changes in mRNA abundance in 127 patients

with transcriptome profiling (Table S5). Pathway analysis

revealed that genes in regions with CNAs showing biased evolu-

tionary timing are enriched for regulation of death receptor

transcription by TP53, apoptosis, and PI3K/AKT activation (Fig-

ure S5A; Table S5).

To better understand these evolutionarily biased CNAs, we

used unsupervised clustering separately on trunk CNA profiles

and on branch CNA profiles. Consensus clustering identified

four trunk subtypes (A, B, C, and D) and three branch subtypes

(e, f, and g; Figure 5A). Clonal and subclonal subtypes were

not correlated with one another (Figure S5B). Both the trunk

and branch subtypes reflected concomitant changes at multiple

loci (Figures 5B and 5C). Branch subtype ewas enriched in gains

at chromosome ends, suggesting changes in telomeres that

occur subclonally. Consistent with this, monoclonal tumors

have �500 bp longer telomeres than polyclonal tumors

(p = 4.74 3 10�2; Mann-Whitney U test; Figure S5C). Telomere

lengths varied within both clonal and subclonal CNA subtypes

(Figures S5D and S5E). Branch subtype e replicates a CNA

subtype identified in previous microarray analyses (Figures

S5F–S5H). These patients have longer telomeres than the rest

of the cohort (Figure S5I) and harbor gains of both telomerase
reverse transcriptase (TERT) and DNA methyltransferase 1

(DNMT1; Figures S5J and S5K) which both regulate telomere

length (Gonzalo et al., 2006).

Clinical Relevance of Tumor Subclonality
Metastatic prostate tumors, which are incurable, harbor large

numbers of spatially co-segregating subclones, with important

implications for novel therapeutic approaches based on molec-

ular phenotyping. We therefore assessedwhether the subclonal-

ity of a localized (potentially curable) tumor reflects its relative

aggressivity in a 200-patient subset of the cohort where a

median 8.85-year clinical follow-up was available. Patients

whose tumor sample showed no evidence of multiple sub-pop-

ulations showed significantly superior outcome to those whose

tumors were polyclonal (HR = 2.64, 95% confidence interval

[CI]: 1.36–5.15; p = 4.22 3 10�3; Wald test). As a prognostic

biomarker, clonality compares favorably to the very best

tissue-based prognostic tests available (Cuzick et al., 2011;

Erho et al., 2013; Klein et al., 2014; Lalonde et al., 2014, 2016).

Critically, these survival differences persist even after adjust-

ment for the clinical prognostic factors pre-treatment PSA,

clinical Gleason score, clinical T-category and PGA (Table S6).

To determine if subclonal mutations directly influence the

accuracy of existing biomarkers, we considered two validated

DNA-based prognostic tests: PGA (with an operating threshold

of 7.49%) and a 100-locus genomic classifier (Lalonde et al.,

2014). We first assessed how accurately microarray-based

CNA assays, which predominate the literature, detect subclonal

CNAs (Figure S6A). Arrays identified a large fraction of clonal

CNAs detected by WGS (42.2% ± 6.1%), but did not identify

most subclonal CNAs (10.6% ± 3.6%; p = 1.17 3 10�10;
Cell 173, 1003–1013, May 3, 2018 1007



Figure 5. Evolution of Recurrent CNA Muta-

tions

(A–C) The relative difference in CNA occurrence

during the evolution of prostate cancer is assessed

by subclonal reconstruction.

(A) CNA profiles of 289 prostate tumors split by

CNA occurrence in trunk and branch. Red in-

dicates gain; blue indicates loss; rows represent

patients; and columns represent 1 Mbp genomic

bins. Patients are clustered by their trunk and

branch CNA profiles. The top two plots reflect

trunk-branch differences in CNA frequency,

showing the statistical significance (top plot,

Q-value) and effect size (difference in frequency

between trunk and branch, FTrunk-FBranch). Key

altered genes (Pearson’s c2 test, FDR adjustment)

within these regions are labeled.

(B and C) The co-occurrence of trunk and branch

biased loci, respectively.

See also Figure S5 and Table S5.
Mann-Whitney U test). We compared this finding on an indepen-

dent dataset (Taylor et al., 2010) and found similar insensitivity

(Figure S6B; Table S6). This lack of sensitivity suggests that

false negatives in validated microarray-based tests may result

from rare aggressive subclones that were not detected

(Figure S6C).

Finally to establish if clonality could supplement existing

genomic biomarkers developed on bulk samples, we stratified

the patients using a multi-modal (CNA, SNV, SV, and methyl-

ation) biomarker scored on the bulk tumor sample (Fraser

et al., 2017) integrated with clonality data to create a unified

biomarker. This signature robustly stratified patients into groups

with distinct prognoses (p = 1.10 3 10�6, log-rank test; Fig-

ure 6A). Importantly, clonality was additive with the multi-modal
1008 Cell 173, 1003–1013, May 3, 2018
biomarker (Figure 6B). Similar results were

seen using PGA (Figures S6J and S6K).

Thus, our results suggest that low-risk

monoclonal patients are highly unlikely to

experience relapse after definitive local

therapy, while polyclonal patients can be

further divided based on genomic criteria

into good and poor prognosis groups.

To evaluate the impact of subclonal

populations on established prognostic

biomarkers, we first focused on PGA.

For each patient we considered what

fraction of their biomarker risk-score

was derived from CNAs present in the

trunk of the tumor and what fraction

was derived from subclonal CNAs pre-

sent in the most aggressive clone. On

average, patients derived 75.0% ±

4.4% of their risk from clonal CNAs and

25.0% ± 4.4% from branch CNAs (Fig-

ures 6B and S6G; Table S6). The PGA

of monoclonal and polyclonal patients

did not differ (p = 0.59; Mann-Whitney
U test; Figures S6H and S6I). We identified 13% of patients

as having clonal risk-score predictions indicating low-risk dis-

ease, but who harbored aggressive high-risk subclones that

changed their risk stratification (Figures 6C and 6D). Similar re-

sults were obtained using a published 100-locus CNA-based

prognostic signature, with 8.9% of patients harboring high-

risk subclones on a background of low-risk trunks (Figures

S6D–S6F; Table S6). Clonality not only characterizes tumors

that are more likely to relapse after definitive local therapy

but also those more likely to metastasize (Figure S7). Thus

aggressive polyclonal tumors are characterized by elevated

genomic instability and specific mutational profiles, and these

findings advocate for the direct inclusion of tumor evolution

biomarkers to improve delivery of precision cancer medicine.



Figure 6. Clinical Relevance of Subclonality

(A) Patient survival outcome stratified with a unified subclonally aware biomarker, which combines a previously developed multi-modal biomarker by Fraser et al.

(2017) and tumor clonality. Univariate modeling was carried out using a log-rank test.

(B) Tumor clonality provides additive prognostic with the multi-modal biomarker in multivariable Cox proportional hazards modeling.

(C) Patients are ordered by their total risk as assessed by PGA. The red line divides the low-risk (PGA < 7.49%) from the high-risk (PGAR 7.49%) patients. Bars

with a gray background indicate patients who are considered low risk when only trunk mutations are considered but harbor high-risk clones detected by

considering CNAs that occur in subclonal populations.

(D) Exemplars of these cases are shown. Red outlines the point at which the patient is classified as high risk.

See also Figure S6 and Table S6.
DISCUSSION

Multi-region sequencing has revealed key aspects of tumor

evolution from small numbers of patients. We evaluated a large

cohort of localized prostate tumors to understand the population

characteristics of their subclonal evolution. Despite modest

depth sequencing of a single spatial region, we are able to

show that a subset of driver mutations occurs late in prostate

tumor development, and these aggregate into subtypes that

reflect divergent and changing mutagenic stresses on tumors

(de Bruin et al., 2014). These observations support the hypothe-

sis that more genetically diverse tumors have inherently worse

outcome, perhaps due to an increased ability to adapt to

local or systemic (e.g., androgen deprivation therapy) therapeu-

tic intervention. Importantly, it appears from multi-region
sequencing studies that essentially all prostate tumors have sig-

nificant poly-clonality because of spatial segregation of distinct

tumor populations (Boutros et al., 2015; Cooper et al., 2015),

but we show here that a subset of these show elevated local sub-

clonal diversification. These tumors are largely biclonal, at least

at the current sequencing depth and analytical sensitivity;

deeper sequencing coverage, improved computational methods

or single-cell sequencing may uncover deeper subclonal struc-

ture. Localized subclonal diversification is directly associated

with the aggressiveness of disease: patients with only a single

subclone in the index lesion tumor have remarkably good

outcome. Indeed, existing biomarkers of patient survival are

only effective in patients with polyclonal tumors, suggesting

that polyclonality is necessary, but not sufficient, for aggressive

disease. It may be that localized clonal diversity increases the
Cell 173, 1003–1013, May 3, 2018 1009



Figure 7. Evolutionary Trajectory Model for

Prostate Cancer

An evolutionary model of prostate tumorigenesis.

Early prostate cancer is largely characterized by

the accumulation of SNVs in genes like FOXA1 and

ATM, along with loss of hallmark tumor suppres-

sors, includingNKX3-1 and RB1. Initially, the aging

signature (signature 1) predominates mutational

processes, but over time additional driver SNVs

accumulate, including SPOP and TP53, eventually

leading to multiple subclones mixing in a single

spatial location. This mostly linear tumor develop-

ment in a spatially restricted area contrasts to the

spatio-genomic heterogeneity of prostate cancer,

and separates the monoclonal from polyclonal

cancers. This sets the stage for subclonal driver

amplifications in MTOR, TSC1, TSC2, BAD, BID,

BAK1, and others. While driver SNVs become less

common at this stage, the homologous recombi-

nation deficiency signature (signature 3) grows in

intensity. Tumors can be stratified into low-, inter-

mediate-, and high-risk groups by integrating

subclonal architecture and biomarker features

from Fraser et al. (2017), including ATM SNVs

and MYC gains. Proportion of patients with a

biochemical relapse is shown per class, with red

indicating an event. Mutations are color-coded by

spatial occurrence (trunk vs. branch) and CNA type

(gain vs. loss). The right-hand bar shows the pro-

portion of SNVs and CNAs throughout tumor

development.

See also Figure S7.
probability that a clone capable of metastatic spreadwill arise, or

that it reflects some inherent feature of the evolutionary adapt-

ability of the tumor. Independent of the mechanism of this asso-

ciation, these data strongly support the use of WGS-based

biomarkers to allow robust subclonal inference since microar-

ray-based assays are prone to false-negative errors when small

aggressive subclones are present.

Combined with previous studies, a picture of the life-history of

aggressive prostate cancer is beginning to emerge. Tumors start

with slow gradual accumulation of SNVs, punctuated by deletion

of some tumor suppressors. In a subset of tumors, driver muta-

tions or other phenomenon induce a switch to the rapid accumu-

lation of copy number gains. These driver mutations lead to

changes in the set of active mutational processes, particularly

increased homologous recombination deficiency even in early

localized disease (Robinson et al., 2015). Concomitant evolu-

tionarybranchingcreatesubclonaldiversity, andasubsetof these

subclones survive primary, definitive therapy, either at the original

site or as occult metastases. The surviving tumor subclones

expand to form a network of related clones that colonize,

compete, and collaborate across multiple metastatic sites (Gun-

dem et al., 2015). However, this broad life history hides large

inter-tumoral differences in driver genes, mutagenic processes,

and clinical aggressivity. Moving forward, it will be key to develop

very large, clinically well-annotated patient cohorts that will allow

mechanistic insight into the specific clinical implications of

different subclonal driver architecturesandmutational processes.

Overall, this life history of prostate cancer implies that early

identification of tumors with multiple subclones and aggressive
1010 Cell 173, 1003–1013, May 3, 2018
genomic and epigenomic features will improve cure rates

through personalized therapy (Figure 7). These patients with

highly aggressive tumors may benefit from adjuvant systemic

treatment (e.g., androgen deprivation therapy) to prevent failure

from occult metastatic disease. By contrast, our data provoca-

tively suggest that patients with monoclonal tumors who are

intermediate risk based on NCCN criteria could be studied for

inclusion in trials of active surveillance.
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MutationSeq (v4.3.7) Ding et al., 2012 http://shahlab.ca/projects/mutationseq/
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient Cohort
We analyzed the genomic data accrued from a cohort of 293 retrospective localized prostate tumors with patient consent and

Research Ethics Board approval using published whole-genome sequences of tumor samples drawn from the index lesion of the

tumor and matched blood-based normal reference samples (Baca et al., 2013; Berger et al., 2011; Cancer Genome Atlas Research

Network, 2015; Fraser et al., 2017; Weischenfeldt et al., 2013). All patients were male and ranged in age from 38-81 years at

diagnosis. For surgery patients, the index tumor was identified macroscopically by a GU expert pathologist at the point of surgery,

and subsequently sampled and biobanked. A fresh-frozen tissue specimen from this index lesion was then obtained for macro-

dissection. For radiotherapy patients, the index tumor was identified on transrectal ultrasound and sampled by needle biopsies

(TRUS-Bx) and was deemed to be the largest focus of disease that was pathologically confirmed. A fresh-frozen needle core ultra-

sound-guided biopsy to this index lesion was obtained for macro-dissection. All frozen specimens were retrieved, sectioned, and

reviewed by the GU pathologist for tumor cellularity and Gleason Score. These were compared against the histomorphology of

the primary surgical specimen for patients who underwent surgery. Patients were offered standard-of-care treatment, with no

randomization or rule-based classification to radiotherapy or surgery. All specimens were reviewed for Gleason grade and cellularity,

and we focused on patients with clinical intermediate-risk disease by NCCN criteria. Briefly, this involves patients with T2b or T2c

disease or having tumors with a Gleason Grade of 7 or having pre-treatment serum PSA of 10-20 ng/mL. Follow-up is ongoing,

with amedian follow-up of 8.85-years. Up to 200 ng of DNA from these fresh-frozen samples were hybridized to Affymetrix OncoScan

arrays for SNP and CNA profiling. Whole-genome sequencing from 50 ng of DNA or more from fresh-frozen tumor was completed on

Illumina HiSeq 2000 or HiSeq X Ten sequencers. WGS andmicroarray protocols for data generation have been described previously

(Fraser et al., 2017). Assays were not blinded.

Transplantable Metastasis Model
The transplantable metastasis model system has been previously described in detail (Jiang et al., 2016). In brief, the parental human

female breast cancer cell line MDA-MB-231 was obtained from the American Type Tissue Collection and engrafted into mouse

models to induce organ-specificmetastasis. The phenotypically stable andmetastatically competent derivative cell lines were grown

from in vivo selected single-cell or mixed-cell populations from bone and lung metastasis. Exome sequencing was performed on the

parental and derived cell lines.

METHOD DETAILS

SNP Microarray Data Analysis
We identified CNV and SNP profiles using Affymetrix OncoScan FFPE Express 2.0 and 3.0 assays. To summarize, copy number

segments were identified and annotated with RefGene (2014-07-15) and BEDTools (v2.17.0) (Quinlan and Hall, 2010). Recurrent calls

were filtered using a 75% threshold in the normal samples. CNA segments were generated using GISTIC2.0 (v2.0.22) (Mermel et al.,

2011) and the average intensity of each segment was obtained from SNP arrays. qpure (v1.1) (Song et al., 2012) and ASCAT (v2.1)

(Van Loo et al., 2010) algorithms estimated cancer cellular purities using data from the SNP arrays. Full details are given elsewhere

(Fraser et al., 2017).

Whole-Genome Sequencing Data Analysis
For each tumor, bwa-aln (v0.5.7) (Li and Durbin, 2009) was used to align the tumor and normal FASTQ files against build hg19 of the

human genome. These BAMs were then locally realigned and subject to quality-score recalibration using GATK (v2.4.9) (McKenna

et al., 2010), followed by lane- and sample-level sample mixup checking and lane-level cross-individual contamination assessment

using ContEst (v1.0.24530) (Cibulskis et al., 2011). SomaticSniper (v1.0.2) (Larson et al., 2012) was then run on the aligned,

recalibrated BAMs to generate predicted somatic SNVs. Full details are given elsewhere (Fraser et al., 2017). Telomere length

was estimated, ignoring read groups, using TelSeq (v0.0.1) with default parameters (Ding et al., 2014).

Somatic Subclonal Copy Number Assessment
Subclonal CNAs were identified from the whole-genome sequencing data using TITAN (v1.11.0) (Ha et al., 2014). First, GC and

mappability files were prepared from the reference file using the BioConductor package HMMcopy (v.0.1.1) (Lai et al., 2016) and

bowtie (v2.2.6) (Langmead et al., 2009). We referred to the practices outlined here: http://bioconductor.org/packages/release/

bioc/html/HMMcopy.html. Next, the Kronos (v1.12.0) pipeline (Taghiyar et al., 2017) was used to preprocess the whole-genome

data and run TITAN (v1.11.0) to generate the copy number calls. MutationSeq (v4.3.7) (Ding et al., 2012) determined the heterozygous

positions in the data using the known dbSNP sites from GATK (v2.4.9) (McKenna et al., 2010). The GC and mappability files

accounted for any biases in the data, prior to running TITAN (v1.11.0). TITAN (v1.11.0) (Ha et al., 2014) was run across an input range

of one to five clusters, representing the exact number of subclones to be predicted. The set of parameters to be usedwas determined

by optimizing for the lowest S_Dbw validity index (Halkidi et al., 2008), and the resulting CNAs were used in all further analysis. For

benchmarking, MuTect (v1.1.4) was used with the default parameters except -tumor_lod option (tumor limit of detection), which was
Cell 173, 1003–1013.e1–e6, May 3, 2018 e2
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set to 10.We then retained only the confident SNVs by filtering out any calls marked by REJECT. Battenberg (v2.2.6) was used via the

cgpBattenberg installation wrapper (v3.1.0) with default parameters and supplemental files generated using developer instructions.

Phylogenetic Reconstruction of Tumors
To reconstruct the evolution of the tumor, we used the cnv-int branch of PhyloWGS (Deshwar et al., 2015) (https://github.com/

morrislab/phylowgs/tree/cnvint, commit: 3b75ba9c40cfb27ef38013b08f9e089fa4efa0c0), in order to take into account both SNVs

and CNAs. We used the parse_cnvs.py script to parse the TITAN (v1.11.0) optimal predicted CNA segments and tumor cellularities,

and filtered any entries that were 1-bp TITAN CNAs. Further, these filtered CNAs and the high confidence SomaticSniper (v1.0.2)

variant calls made on callable bases were inputted into the create_phylowgs_inputs.py script to generate PhyloWGS inputs. As a

final CNA filter, we also removed any CNA entries generated that had a total read depth of 0. In addition, we annotated each SNV

with the gene (if any) associated with the mutation as given by ANNOVAR (v2015-06-17) (Wang et al., 2010). Using default param-

eters, PhyloWGS evolve.py script generated possible tree structures for each tumor. The JSON results were parsed to determine the

best consensus tree, given by the largest log likelihood value, and the SNVs and CNAs associated with each subclone in the best

predicted structure (Figure S1A).

Phylogenetic trees were then aggregated across the cohort. The node numberings and edge connections in PhyloWGS trees were

hierarchized by subclone cellular prevalence and thus not translatable across different samples with the same overall evolutionary

trajectory. With the root node (normal population) labeled as 0, each consensus tree was transformed according to two rules

(Figure S1B):

1. Nodes at depth i are labeled a lower number than all nodes at depth j, where j > i.

2. Trees are left-heavy.

Notice that in the example the two tree structures were the same. For each individual tumor tree, we ensured that each node had at

least 5 SNVs or 5 CNAs. Nodes that did not satisfy the criteria were: 1) merged with its parent node, if it has no siblings (its parent has

no other child); 2) merged with its siblings; or 3) eliminated if it is the only direct child of the normal node. The eliminated node’s

children become the direct descendants of the normal (Figure S1C). This conservative approach was very rare across the cohort,

changing tree structure for 13/293 tumors, including 7 for which a clone was supported by either a single CNA or a single SNV

and a single CNA. This heuristic leads our pipeline to be conservative and to be a lower bound on the true subclonal diversity of a

tumor. When PhyloWGS returned a polytumor solution, it was re-run with a different random number generator seed up to twelve

times, after which a polytumor solution was accepted. This procedure was designed to provide a lower bound on the frequency

of polytumors. The order of seeds used was: 12345, 123456, 1234567, 12345678, 123456789, 246810, 493620, 987240,

1974480, 3948960, 7897920, and 15795840.

Cell Line Validation
To validate our approach, we applied phylogenetic inference using PhyloWGS to a transplantable metastasis model where ground

truth is known (Jiang et al., 2016). CNA detection used SynthEx (v1.5) and freebayes (v1.0.0) parameterized as recommended by the

developers. SNV detected using MuTect (v1.1.7) with panel of normal derived from TCGA Breast Invasive Carcinoma samples

(Koboldt et al., 2012). We recovered the subclonal composition of the bone metastasis mixed cell population (MCP)-derived cell

line. Further, we showed that the lung metastasis MCP-derived cell lines have similar composition despite possible artifacts in

subclone identification (Figures S1H–S1K).

QUANTIFICATION AND STATISTICAL ANALYSIS

Scoring Tree Structures
To quantify the subclonal diversity of each tumor sample by the number and abundance of subclones, we calculated the Shannon

diversity index (H) (Magurran, 2004) by the equation:

H= �
X

i

pi lnðpiÞ
where pi is the abundance of clone i in tumor. Clonal abundanc
e is calculated using the CCF (cancer cell fraction) of each node,

subtracted by the total CCF of its children, as to give the percentage of cells still belonging to the subclone in the tumor.

Classifying Mutations
Using the consensus trees generated by PhyloWGS, we classified mutations (both CNAs and SNVs) as occurring in the trunk or

branch of the tree. Trunk mutations encompassed those that occurred between the root node (normal) and its only child node, while

all others were classified to have occurred in branch.
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Representative Tree Structures
We aggregated the patients based on their tumour tree structures. For each patient, the rank product was calculated by multiplying

the rank in terms of the number of SNVs, CNAs measured by total PGA, and tumor purity. Each condensed tree was represented by

the median tree. For each node of the tree, we calculated one standard deviation from the median tree cellularity across the entire

population of nodes at this position in all identical trees.

Subclonal Analysis of Recurrent Mutations
We identified recurrent coding SNV mutations and classified them as have occurred in trunk or branch. All SNVs assigned by

PhyloWGS were filtered against blacklists of known sequencing artifacts and germline contaminants, and whitelists of recurrent

COSMIC (v70) mutations. Nonsynonymous, stop-loss, stop-gain or splice-site SNVs were considered as functional (based on

RefGene annotations). For each gene that was recurrently mutated at 2% or higher (with functional SNVs in more than 6 patients),

or previously identified as recurrently mutated (Fraser et al., 2017), we calculated the proportion of SNVs that have occurred in trunk.

We used Fisher’s exact test to check for significance of whether the gene was preferentially mutated in the trunk or in the branch.

For non-coding SNVs (ncSNVs) assigned by PhyloWGS,we considered only those that have been previously identified as recurrent

(Fraser et al., 2017). We calculated the proportion of each recurrent ncSNVs that have occurred in trunk and used Fisher’s exact test

to check for significance.

CNAs identified by PhyloWGS were assigned to have occurred in the trunk or branch. The CNAs for patients that had OncoScan

data were further filtered against those reported by the technology, retaining only the TITAN-predicted CNA that had overlapped. For

patients lacking OncoScan data, we used the mean recurrence across the other patients in each chromosome. We considered bins

of 1 Mbp across the genome and set the CNA indicator to one for all patients that had a CNA overlapping with that 1 Mbp stretch. We

then compared the presence of truncal and branch CNAs across the patients and identified 13 groups of significantly different CNAs

(Pearson’s c2 test; multiple correction using FDR; q % 0.10). Groups were determined by their cytoband location. Bins that were

within 20 Mbp of each other were considered as the same group.

Consensus clustering was applied separately to the trunk and branch CNA profiles using the ConsensusClusterPlus package

(v1.24.0), customized to include the Jaccard distance metric (trunk: distance = Euclidean, pItem = 0.8, finalLinkage = Ward.D2,

innerLinkage = Ward.D2; branch: distance = Jaccard, pItem = 0.8, finalLinkage = Ward.D2, innerLinkage = Ward.D2) (Wilkerson

and Hayes, 2010). The optimal cluster number was selected by minimizing the proportion of ambiguous clustering value

(Sxenbabao�glu et al., 2014). Loci were determined by position from a cytoband file for hg19 downloaded on 2016-09-21 from

http://hgdownload.cse.ucsc.edu/downloads.html, or by invoking the command: curl –s http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/database/cytoBand.txt.gz j gunzip -c > cytoBand.txt

Pathway Analysis
The genes involved in the 13 groups of significantly different CNAs were analyzed further for pathway enrichment. Using gprofileR

(v0.6.1) in R (v3.2.5) (Reimand et al., 2007), all statistically significant pathways were obtained from default parameters and the

data sources Gene Ontology (Biological Process, Molecular Function, and Cellular Component), KEGG and Reactome. Pathways

that involved more than 700 or fewer than 5 genes were discarded (Pinto et al., 2010).

To identify pathways that were significantly differentially affected in the trunk and branch, we used Fisher’s exact test to assess

whether the gene-set was more frequently affected by trunk or branch CNAs and label permutations to determine their significance

(Pinto et al., 2010). For each patient, the trunk and branch CNA profiles were separately used to determine the gene-sets affected.

A pathway was considered to be affected if the CNAs implicated at least one gene belonging to the gene-set. As the CNAs belonged

to either trunk or branch, the location status of the set of pathways affectedwere respectively classified as trunk or branch. After initial

assignment, we permuted the location status of pathway sets 1000 times so that the CNA events were independent of location

assignment. The p values generated from Fisher’s Exact Test through the iterations were used to build the null hypothesis distribution

and pathways with q < 0.05 were considered significant. Significant pathways were visualized using Cytoscape (v3.4.0) (Shannon

et al., 2003).

Subclonal Analysis of Kataegis
To quantify where and when kataegis events occurred, we used the sliding window binomial test approach as described previously

(Fraser et al., 2017). Each subclone of every patient was considered separately, with all of its post-filter SNVs assigned by PhyloWGS

in the consensus tree, as to pinpoint where the kataegis events occurred in tumor evolution. A rainfall plot with the x axis as SNV

position and the y axis as the log transformed inter-mutational distance was generated to represent all of the SNVs in all of the

patients that had at least one kataegis event, with the SNVs involved in the events highlighted using their timing of occurrence.

Trinucleotide Mutation Signatures
We used TrackSig to estimate signature exposures across the evolutionary history of each individual tumor (https://doi.org/10.1101/

260471). We used cancer cell fraction (CCF) as an estimate of relative of mutation occurrence. We assumed that mutations with

higher CCF occurred earlier than the ones with lower CCF. Thus, CCF can be viewed as pseudo-time of mutation occurrence.
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To construct the timeline, we sorted mutations based on decreasing CCF and divided them into bins of four hundred. Each bin

corresponds to one time point, and in each subsequent time point the bin was moved by one hundred mutations in a sliding window

manner. Within a time point we separated mutations into 96 categories based on trinucleotide context and fit the mutational signa-

tures to those counts usingmixture ofmultinomials. We use a set of 30 signatures fromCOSMIC (http://cancer.sanger.ac.uk/cosmic/

signatures). Signatures are represented as multinomial distributions over 96 types of mutations. Though mixture of multinomial

modeling, we obtain mixture coefficients, which correspond to exposures of the mutational signatures in each bin.

Time points when signature profiles change substantially represent loss or gain of different mutational processes. We used a

greedy search algorithm to find the change points in signatures trajectories and used Bayesian Information Criterion to estimate

the optimal number of change points. Thus, signature exposures are represented as trajectories across the CCF timeline.

We evaluated uncertainty by bootstrapping sets of mutations and re-computing exposure estimates 30 times. The standard de-

viation of the exposures at each time point was used as an uncertainty estimate over exposures and plotted as shaded area around

the trajectory.

Not all of the signatures are active in the tumor at the same time. The signatures active in the sample depend on the cancer type and

environment. To determine active signatures in a sample, we fit all 30 COSMIC signatures and chose a subset of signatures that have

exposure > 5%. We refit the signature trajectories as described above using the selected set of signatures.

We plotted the computed exposures as trajectories on the decreasing CCF scale. Each mutation bin is assigned a CCF value

based on the average CCFs of the SNVs in the bin. We plot the trajectories averaged across 30 bootstrap runs. Signatures that

were not in the subset of six signatures most active in our samples (i.e., S1, S3, S5, S8, S9 and S16) or did not reach 20% at any

time point were excluded from visualizations. See doi: https://doi.org/10.1101/260471.

Subclonal Tree Correlations
We used Spearman’s r to test for associations with age at diagnosis, PSA, clinical Gleason Score, T-category and ERG fusion status.

We compared these to a set of tree features comprising PhyloWGS subclone counts, tree depth, proportion of SNVs in trunk, pro-

portion of CNAs, in trunk, Shannon Index, total PGA, PGA accumulated in trunk and kataegis events. Additional associations were

tested among these tree correlates as well as tumor cellularity. Only polyclonal samples were analyzed as they have both a trunk and

a branch. CNAs Trunk and SNVs Trunk refer to the proportion of CNAs and SNVs in the trunk, respectively. PGA Overall refers to the

total PGA in the sample while PGA Trunk refers to PGA in the trunk node only.

Microarray Sensitivity
We split the filtered TITAN CNAs into trunk and branch ones, creating separate gene by patient matrices. For each patient we then

considered what proportion of genes with TITAN CNAs was identified to have CNAs using OncoScan microarrays. We tested for

differences between the proportion of trunk CNAs detected and the proportion of branch CNAs detected with a Mann-Whitney

U-test.

Survival Analysis
The tumors were arranged into two distinct clonality groups: monoclonal tumors only derive one clonal population in its evolution,

while polyclonal includes the remainder, with at least one subclonal population. We assessed differences in outcome by fitting a

Cox proportional hazard regression model, reporting the p value from theWald test. Multivariate analyses were carried out to correct

for known prognostic clinical variables (clinical Gleason Score, clinical T-category and pre-treatment PSA), and the power to detect

subclones (reads per cancer cell, number of SNVs and number of CNAs). The proportional hazards assumption was verified by

examination of the Schoenfeld residuals and, for multivariate analyses, global Pearson’s c2 tests. Primary outcome was time to

BCR, defined to be a PSA rise of R 2.0 ng/mL above the nadir PSA for patients who underwent image-guided radiotherapy. For

patients who underwent surgery, BCR was defined as two consecutive post-surgery PSA measurements > 0.2 ng/mL (backdated

to the date of the first increase), as long as the patient had a post-surgery PSA < 0.2 ng/mL, otherwise this was considered a

primary treatment failure rather than a BCR event. If a patient had successful salvage radiation therapy, the patient was not

considered to have a BCR. If PSA continued to rise after salvage radiation therapy, BCR was backdated to the first PSA

measurement > 0.2 ng/mL. If a patient received other salvage treatment (such as hormonal therapy or chemotherapy), this is consid-

ered a BCR.

Scoring Biomarker Signatures
The proportion of the genome altered (PGA) was calculated for each cancer cell population in a patient’s tumor, where every

population harbors all of the CNAs that have occurred in its evolutionary history. Trunk PGA was calculated from trunk CNAs, while

branch PGA was calculated from the CNAs that have occurred between the clonal node and the most altered subclonal node. PGA

was calculated by summing the total number of bases covered by the CNAs and divided by the total size of the whole genome. We

used the previously validated at-risk threshold of PGAR 7.49%: patients below this value are predicted to have good prognosis, and

patients equal to or above it are predicted to have poor prognosis (Lalonde et al., 2017).

To confirm the PGA results, we also used a validated prognostic 100-locus CNA signature for localized prostate cancer to assess

the risk of each patient (Lalonde et al., 2014). This signature was applied to each clonal population in a patient’s tumor in the same
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way as for PGA: the patient risk score resulting from only the clonal node is the trunk risk score, while the gain in risk score between

the clonal and the subclone with the highest risk is defined as the branch risk score. We retained the published and validated at-risk

threshold for this signature of 0.5, with scores lower than this indicating good prognosis and those equal to or higher predicting poor

prognosis. We used Cox proportional hazard models and area under the receiver operator curve to assess differences in biomarkers

applied to different nodes. Scores from the multi-modal biomarker signature are shown in Table S1. Reporting of analysis of

prognostic signatures follows the REMARK recommendations.

Data Visualization and Reporting
Plottingwas performed in the R statistical environment (v3.2.5) using the lattice (v0.20-34), latticeExtra (v0.6-28) and BPG (v5.3.4; doi:

https://doi.org/10.1101/156067) packages. Figures were also compiled using Inkscape (v0.48) and Cytoscape (v3.4.0). Point

estimates for the mean were reported along with a 95% confidence interval for the population mean. Unless otherwise stated, all

statistical tests are two-sided. In Figure 1B, the representative tree for each tree structure was selected by calculating the rank

product of the number of SNVs, PGA, and tumor purity. The tree with themedian rank-product was selected for visualization. All trees

are shown in Data S1. Grade Groups reported in all figures correspond to the specific tumor specimen used for genomic analyses.

DATA AND SOFTWARE AVAILABILITY

The accession number for the raw sequencing data reported in this paper is European Genome-phenome Archive:

EGAS00001000900 (https://www.ebi.ac.uk/ega/studies/EGAS00001000900). Processed variant calls are available through the

ICGC Data Portal under the project PRAD-CA (https://dcc.icgc.org/projects/PRAD-CA). A high-resolution version of Data S1 is

available at https://labs.oicr.on.ca/boutros-lab/projects/200pt.
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Supplemental Figures

Figure S1. Reconstruction Workflow, Related to Figure 1

(A) Analysis workflow, starting from raw sequencing data and ending with processed and annotated trees.

(B) Intermediate processing step in which PhyloWGS-reconstructed trees were aggregated across the cohort. Nodes are initially numbered according to

PhyloWGS nomenclature, then transformed to a hierarchical structure.

(C) Intermediate processing step that determines if a node has sufficient mutations, or will be merged. Nodes are labeled by the number of mutations they have

and color-coded based on the subclone they arise from. This represents cases when a node is merged with its parent, merged with its sibling and when it is

eliminated.

(D) Cellularity estimates from PhyloWGS, PhyloSub, TITAN, ASCAT and ISOpure. The bottom left shows an overlay of all methods while the other panels show

different estimation methods. Each dot shows the estimate for a sample. Samples are ordered by TITAN cellularity estimates.

(E) shows the number of subclones detected as a function of the study in which the data were generated.

(legend continued on next page)



(F) shows the sample coverage corrected by ploidy, to give reads per cancer chromosome, as a function of the study in which the data were generated.

(G) shows the distribution of per-tumor coverage by the number of subclones detected. p values from a Kruskal-Wallis test are shown in plots (E–G).

(H–K) Tree structures and sample subclonal composition of cell-line transplantable metastasis models from Jiang et al. Trees show relationships between

subclones with subclone one representing the clonal population and all others representing subclonal populations. Barplots show the subclonal composition of

each cell line sample. (H and I) The results from a bone metastasis mixed cell population (MCP)-derived cell line. (J and K) Results from a lung metastasis MCP-

derived cell line are shown. These results recapitulate the known phylogeny of these cell line populations.

(L–O) We also compared tree characteristics across four phylogenetic reconstruction methods: TSP: TITAN + SomaticSniper + PhyloWGS; TMP: TITAN +

MuTect + PhyloWGS; BSP: Battenberg + SomaticSniper + PhyloWGS; BMP: Battenberg + MuTect + PhyloWGS. (L) Differences in clonal PGA between com-

parable methods. Absolute median is the median of the absolute values of differences. Differences in percentage of clonal SNVs between methods considering

only SNVs found in both resulting trees are shown in (M). Shared and unique SNVs in phylogenetic trees from different methods that use the same SNV caller are

shown in (N) and (O). SNV presence in the tree depends on the subclonal CNA calls of the region. The covariates on the bottom indicate tree structure based

on TSP.



Figure S2. Mutational and Evolutionary Hallmarks of Subclonality, Related to Figure 2

(A) Kataegic events across all samples, with each dot representing an SNV and the coloring specifying whether an SNV is part of a kataegic event in trunk or

branch. Within a kataegic cluster of mutations, inter-mutational distances are calculated. Kataegis score measures the significance of deviation, from expected,

within these clusters.

(B) Correlations between tree characteristics (Table S1; STAR Methods) using Spearman’s r.

(C) shows the proportion of 1Mbp bins that contain a CNA that are predominantly losses: an estimate of loss-only PGA, with p value from aMann-Whitney U-test.

(D) compares CNA lengths in the trunk and branch, with p value from a Mann-Whitney U-test.



Figure S3. Trinucleotide Mutation Signature Distributions, Related to Figure 3

(A) Change of exposure level per signature, across all time points in samples with more than 600 SNVs.

(B) Shape of each signature by sample, as characterized by change-points with non-overlapping error bars. Patients were clustered using consensus clustering

and sorted by signature change within each cluster.



Figure S4. Differential Trunk-Branch SNV Mutation Frequency, Related to Figure 4

(A–D) Power analysis for tests of whether coding SNVs occur preferentially in trunk or branch, based on Fisher’s exact test and Bonferroni correction for 20 tests.

Effect sizes 0.2, 0.4, 0.6, and 0.8, respectively. The orange dots indicate the sample size of this study (n = 289 total, of which n = 146 are polyclonal). The

background color indicates the statistical power.

(E) Non-coding SNVs previously identified as recurrent were classified as trunk or branch. Samples are ordered by tree-type and the total number of SNVs (both

coding and non-coding). Non-coding SNVs are sorted by their proportion of occurrence in the trunk and frequency.



Figure S5. Pathway and Subtype Hallmarks of Subclonal CNAs, Related to Figure 5
(A) Enrichmentmap showing pathways (Q < 0.05, multiple testing correction using FDR) related toCNAs that were enriched in the trunk or branch from usingGene

Ontology, KEGG, and Reactome. Enriched pathways from g:Profiler (Reimand et al., 2007) were filtered via permutation analysis and filtered pathways visualized

with Cytoscape (v3.4.0).

(B) The concordance of trunk and branch subtypes is shown by comparing the expected proportion (top) to the observed proportion (middle) of patients in the pair

subtypes along the x axis. At the bottom is the Q-value assessing whether the proportion of patients classified in each pair of subtypes differs from that expected

by chance alone (Fisher’s Exact test).

(legend continued on next page)



(C) compares normalized telomere length differences (estimated with TelSeq [Ding et al., 2014]) between monoclonal and polyclonal tumors (Mann-Whitney

U-test).

(D and E) Telomere lengths of patients clustered into trunk and branch CNA subtypes, respectively, with the corresponding Kruskal-Wallis test p value.

(F) Patient-wise overlap between subtypes having sub-telomeric gains.

(G and H) The average profile for the 27 patients in branch subtype e are shown in (G) using the CNA profiles from Fraser et al. (2017) and in (H) using the derived

branch profiles. Gene gains are represented in red and gene losses in blue.

(I) The difference between estimations of telomere length in the normal and tumor (Fraser et al. 2017) samples is shown with the corresponding two-sided

Wilcoxon test p value comparing e patients to all others.

(J and K) Subtype e is enriched for patients with (J) gain of TERT and (K) loss ofDNMT1 in the overall (Fraser et al. 2017) CNA profiles, testing for equal proportions

using Pearson’s c2 test.



Figure S6. Differential Risk Classification across Technologies, Related to Figure 6

(A) Proportion of WGS-detected CNAs in the trunk and branch that were detected by microarrays in matched DNA aliquots.

(B) Recurrence of CNAs in the genes identified as differentially altered in trunk and branch are shown for microarray data from an independent patient cohort

(Taylor et al., 2010).

(C) Gene-level recurrence across technologies in the cohort from the current study, demonstrating much higher agreement for trunk than branch aberrations. p

values from Mann-Whitney U-tests are shown in (A)–(C).

(D) shows that the area under the receiver operator curve (AUC) is unchanged for the 100-locus risk score signature applied to the trunk and to the subclone with

the highest risk score.

(E and F) Risk score of 100-locus biomarker calculated for trunk mutations only, and all mutations in the tumor. The red line divides the low-risk (risk score < 0.5)

from the high-risk (risk scoreR 0.5) patients. Bars with a gray background indicate patients that are pushed to being high risk when considering CNAs that occur

in their subclonal populations. Exemplars of these cases are shown in (F). Red outlines the turning point in which the patient becomes high risk.

(G) Shows the area under the receiver operator curve (AUC) is unchanged for PGA calculated with either a cutoff of 7.49% applied to trunk alone or the subclone

with the highest PGA.

(H–K) Monoclonal and polyclonal patients do not differ in their PGA, irrespective of whether it is estimated by WGS (H) or microarray platforms (I). However, the

BCR-free rate of monoclonal and polyclonal samples do differ whenmedian dichotomized by PGA considering subclonal architecture for bothWGS-estimates of

PGA (J) and microarray-based PGA estimates (K). Statistical assessment in (J) and (K) used the log-rank test.



Figure S7. Clonality Associations with Tumor Metastasis, Related to Figure 7

(A) Patients with polyclonal tumors are enriched for metastasis.

(B) Further, they show a trend toward reduced metastasis-free rate, with statistical significance assessed using the log-rank test.

(C and D) The proportion of samples with a metastasis is significantly different between different classes of the unified biomarker (C), and this corresponds to

trends toward inter-group differences in metastasis-free rate (D).
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