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Introduction
Clear-cell renal cell carcinomas (ccRCC) frequently exhibit 

genetic intratumor heterogeneity (ITH) that can fuel dis-
ease evolution (1). In the context of the ongoing TRACERx  
Renal study, we previously resolved the patterns of driver 
event co-occurrence, mutual exclusivity, and ordering, 
demonstrating that ccRCC can be categorized into seven 
different evolutionary subtypes (2). The patterns of clonal 
evolution in these trajectories range from punctuated, with 
early fixation of multiple driver events and aneuploidy that 
associate with rapid metastases, to highly branched, with 
extensive parallel evolution of distinct clones and attenu-
ated metastatic progression (2, 3). These observations lay a 
strong motivation to further investigate the bases of clonal 
evolution in ccRCC.

The tumor genome traces past somatic events which serve 
to reconstruct an evolutionary history, but it does not record 
the concurrent evolution of the tumor cell phenotype and 
its microenvironment. Therefore, prior studies with an  
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exclusive focus on genomics could not determine the impact 
of selected genetic events on the phenotype nor the corre-
sponding evolution of the tumor microenvironment (TME), 
leaving a significant knowledge gap. For instance, the loss 
of chromosome arms 9p and 14q is necessary for metastatic 
progression (3), but the phenotype that underpins meta-
static potential is unknown. Knowledge of the phenotypes 
under selection can unveil new therapeutic vulnerabilities, 
and understanding TME evolution could guide the selection 
and scheduling of the current therapies targeting angiogen-
esis and immune checkpoints.

Gene expression, as evaluated through RNA sequencing 
(RNA-seq), provides a snapshot of the tumor phenotype and 
the composition of the TME at the time of sampling. Conse-
quently, paired multiregional DNA and RNA-seq of a tumor 
enables the investigation of the covariation of the tumor 
genome, transcriptome, and TME (4–6). In a recent study, 
significant transcriptional ITH was observed in advanced 
stage treated ccRCC, underscoring a prevalent sampling bias 

Although the key aspects of genetic evolution and their clinical implications in 
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affecting expression-based biomarkers (7). However, this 
study did not comprehensively explore transcriptional evolu-
tion and its relationship with genetic changes in earlier dis-
ease stages or treatment-naive metastases.

In this study, we integrated multiregional RNA and DNA 
profiling and phylogenetic reconstruction to delineate the 
evolution of the TME and transcriptional changes from tu-
mor initiation to metastases in 79 treatment-naive patients 
enrolled in the TRACERx Renal study (NCT03226886). Our 
findings reveal widespread nongenetic ITH not entirely deter-
mined by genetic evolution. This adds a layer of complexity 
to ccRCC evolution, with nongenetic evolution contributing 
to a substantial portion of functional ITH.

Results
TRACERx Renal RNA-seq Cohort

The TRACERx Renal cohort provides a distinct opportunity 
to evaluate the transcriptional patterns in clonally resolved 
tumors and link them to clinical outcomes. We performed 
full-length bulk RNA-seq on 243 samples from 79 patients 
enrolled in the TRACERx Renal study (NCT03226886). Our 
cohort includes 191 primary tumor regions, 22 matched 
metastatic regions, 18 matched tumor thrombus regions, and 
12 tumor-adjacent normal samples. The cohort is reflective of 
the entire disease spectrum, with 18 stage I, 4 stage II, 25 stage 
III, and 27 stage IV tumors (Supplementary Fig. S1).

All samples under study were previously profiled for ge-
netic alterations (2, 3), including somatic mutations in driver 
genes and driver somatic copy number alterations (SCNA). 
Tumors included in this cohort had varying degrees of genetic 
ITH (range: 0–13.5) and aneuploidy [weighted genome insta-
bility index (wGII; range: 0.01–0.93)], both important features 
of clonal evolution. Canonical ccRCC drivers were frequently 
subclonal in this cohort, including PBRM1 (6/79 patients, 
7.6%), SETD2 (9/79 patients, 11.4%), 9p loss (25/79 patients, 
31.6%), and 14q loss (29/79 patients, 36.7%). This provides a 
unique opportunity for within-patient comparison of tumor 
regions with and without a given somatic aberration, hence 
controlling for the impact of patient-specific factors on tran-
scriptional changes (see Supplementary Note S1 for a more 
detailed description of how prior TRACERx Renal results are 
incorporated into this study).

Pervasive Transcriptional Inter- and Intratumor 
Heterogeneity in ccRCC

To visualize transcriptional variation within the TRACERx 
Renal cohort, we applied uniform manifold approximation 
and projection (UMAP) dimensionality reduction to normal-
ized gene expression counts across the 231 tumor samples 
(Fig. 1A). As anticipated, we could observe that samples from 
the same patient tended to cluster in UMAP space (patients 
K243 and K390 highlighted in Fig. 1A; Supplementary Fig. 
S2A and S2B). Accordingly, we observed inter-patient tran-
scriptional heterogeneity to be 2.9-fold (95% CI, 2.7–3.0) 
higher than transcriptional ITH (Supplementary Fig. S2C). 
Nonetheless, significant transcriptional differences were ob-
served among distinct samples from the same patient. For 
instance, in patient K153, two distinct clusters could be  

observed, consistent with their separate phylogenetic branches 
associated with BAP1 and PBRM1 mutations, respectively 
(Fig. 1A). This highlights the presence of considerable tran-
scriptional ITH in ccRCC.

To quantify transcriptional ITH, we adapted a previously 
published methodology to condense the extent of transcrip-
tional differences between tumor samples from the same pa-
tient into a single metric: intratumour expression distance. 
(I-TED, see “Methods”; Fig. 1B; Supplementary Fig. S3A and 
S3B). This metric is defined using the top 500 with highest 
expression variance in the TRACERx Renal cohort (Supple-
mentary Table S1). I-TED scores across the TRACERx Renal 
cohort varied more than 10-fold (range: 0.06–0.7; Fig. 1C), 
reflecting a wide range of transcriptional heterogeneity in 
ccRCC, from largely homogeneous to highly heterogeneous 
tumors. Unlike genetic ITH (2), higher transcriptional ITH 
did not associate with poorer outcomes (Supplementary Fig. 
S4A and S4B).

Next, we investigated the factors associated with variance in 
I-TED scores through a multivariate analysis including nine 
clinical and genetic features (see “Methods”). We confirmed 
that neither the total number of profiled tumor regions per 
case nor variation in tumor purity confounded I-TED esti-
mates (Fig. 1D). Instead, we observed that high I-TED values 
were significantly associated with both genetic ITH and the 
fraction of the genome affected by subclonal copy number  
alterations (i.e., copy number heterogeneity), together ex-
plaining 19% of the variation in I-TED scores (Fig. 1D). 
Among individual subclonal copy number drivers, subclonal 
9p loss contributed 10.7% of I-TED variance (Fig. 1D), more 
than any other copy number driver alteration (Supplementary 
Fig. S5A). Additionally, subclonal mutations in chromatin 
modifier genes—KDM5C, ARID1A, SETD2, PBRM1, and BAP1, 
which plausibly can induce significant transcriptional change 
through downstream epigenetic remodeling—explained 6% of 
the variance.

To understand how the factors that impact I-TED are 
associated with changes in the expression of individual 
genes, we applied a gene-level linear regression framework 
(see “Methods”). Here we jointly account for variation in tumor 
purity and explore the cis and/or trans effects of the factors 
that were associated with I-TED variance (Fig. 1E). Changes in 
gene dosage significantly [false discovery rate (FDR) < 0.05] 
explained the expression of 4,791 (34.2%) genes (Fig. 1F), 
with a strong positive association between gene dosage and 
gene expression, as expected. In agreement with the anal-
ysis of I-TED variance, subclonal 9p loss and mutations in 
chromatin modifier genes were associated with a significant 
downregulation of 3,210 (22.7%) and 2,033 (14.4%) genes  
and upregulation of 3,059 (21.7%) and 2,197 (15.6%) genes 
(Fig. 1F), respectively. Approximately 5,924 of the 6,269 
genes with significant changes in expression upon 9p loss were 
located on other chromosomes (Supplementary Fig. S5B), 
suggesting that 9p loss associates with genome-wide expres-
sion changes. Overall, these factors explained 49.9% of tran-
scriptional variation at gene level (Supplementary Fig. S6), 
consistent with the 43.8% of variance explained in the multi-
variate regression of I-TED scores (Fig. 1D). Taken together, 
this suggests that transcriptional diversification is extensively, 
but nonexclusively, driven by genetic variation in ccRCC.
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Figure 1.  Transcriptional inter- and intratumor heterogeneity is pervasive in TRACERx Renal. A, UMAP visualizing the transcriptional variation across 
231 tumor samples (gray points). Samples from patients K390, K243, and K153 are highlighted to illustrate the varied levels of transcriptional ITH in 
distinct patients. For patient K153, we highlight the phylogenetic tree branch containing the clones observed in the adjacent sample points. B, Schematic 
representation of the calculation of transcriptional distance between two samples from the same patient (see Supplementary Fig. S3A for generalization 
for multi-sample patient, I-TED). The correlation (r) between the expression of the top 500 most variable genes across the TRACERx Renal cohort in both 
samples informs on the degree of transcriptional similarity between both samples. The final estimate of transcriptional distance is defined as 1−r. I-TED 
is estimated by repeating this procedure across all different pairs of samples within a patient and averaging the observed transcriptional distances (see 
“Methods”; Supplementary Fig. S3A for details). C, Primary tumor I-TED values (purple diamonds) across 60 TRACERx Renal patients with at least two 
regions sampled. Pale purple squares represent pairs with minimum and maximum transcriptional distances; blue points represent the transcriptional 
distance between the rest of sample pairs, if available. D, Proportion of the variance in primary tumor I-TED scores in TRACERx Renal explained by nine 
selected genomic and clinical features (see “Methods”) on a multivariate linear model of I-TED values across 60 tumors with at least 2 sampled primary 
tumor regions. Variables in blue and gray bars display significant (FDR < 0.05) and nonsignificant associations, respectively. E, Schematic representation 
of a linear regression framework to identify correlates of within-patient expression changes in each of 14,120 genes, including cis effects of increased/
decreased gene dosage and variation in purity. Changes in gene expression and copy number are gene and pair specific; changes in purity and driver 
mutation (or target variable) are pair specific and constant across different genes. For each gene, a linear mixed-effects model is fitted with the values 
obtained across all possible primary–primary pairs of patients, accounting for patient of origin and whole-genome doubled status, included as random 
covariates in the model (see “Methods” for details). F, Distribution of regression coefficients for linear mixed-effects models fit for each of 14,120 genes 
and each of the variables included in the model, with a total number of genes significantly (FDR < 0.05) associated with a variable highlighted at the top. 
To allow comparison of target variables with a background expectation, random binary and continuous covariates were inputted to the model in E. Boxes 
extend from the lower to the upper quartiles, with the line inside the box representing the median, with whiskers indicating data within 1.5 times the inter-
quartile range (IQR) from the quartiles; violins represent the distribution of values per group.
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ccRCC Transcriptional Evolution Mirrors Clonal 
Evolution

To understand the hierarchy of transcriptional diversifi-
cation in ccRCC, we aimed to trace transcriptional changes 
throughout tumor development while controlling for pa-
tient-specific influences. First, we interrogated overall tran-
scriptional changes at two pivotal stages of tumor evolution: 
malignant transformation and metastatic progression. To 
explore this, we calculated transcriptional distances between 
pairs of samples obtained from multiple tumor locations in-
cluding tumor-adjacent normal tissue and spatially separate 
regions of the primary tumor and the associated metastases. 
Our analysis revealed significantly higher transcriptional 
distances between primary–normal and primary–metastasis 
pairs compared with primary–primary tumor pairs from the 
same patient, with the expression of 8,122 genes (3,753 down-
regulated and 4,369 upregulated) and 4,886 genes (2,489 
downregulated and 2,397 upregulated) significantly chang-
ing from normal tissue to primary and from primary to met-
astatic samples, respectively (Fig. 2A and D). This supports 
that marked transcriptional differences occur during malig-
nant transformation (8) and potentially during metastatic 
progression.

In particular, from adjacent normal kidney to primary 
tumor, we observed a significant increase in the expression 
of genes involved in proliferation, glycolysis, oxidative phos-
phorylation, and response to reactive oxygen species and a 
decrease in the expression of genes involved in mitotic spindle 
assembly and cell-to-cell junctions (Supplementary Table S2). 
The magnitude of these changes did not correlate with the 
distance to the most recent common ancestor (MRCA; Sup-
plementary Fig. S7), perhaps suggesting a rapid transcrip-
tional change upon malignant transformation. Meanwhile, 
going from primary tumor to metastasis, we identified in-
creased expression of proliferation and metabolic pathways, 
including the overexpression of MYC or E2F targets and oxi-
dative phosphorylation (Supplementary Table S3).

We next explored whether transcriptional diversification 
aligns with the clonal structure of the tumors in our cohort (2). 
To test this, for each primary tumor, we measured the pair-
wise transcriptional and clonal distances between distinct 
samples (Supplementary Fig. S8), in which the clonal distance 
is defined as the total number of (sub)clonal expansions 
spanning the divergence of the tumor clones identified in two 
distinct samples (see “Methods” for details; Supplementary 
Fig. S8). We observed that transcriptional distance mono-
tonically increases with clonal distance (LME P-value < 0.001, 
corrected for differences in purity between biopsies; Fig. 2E), 
suggesting that, in spite of transcriptional plasticity, clonal 
evolution leads to progressive and stable changes in gene 
expression.

Given the marked transcriptional changes observed in me-
tastases (Fig. 2C and D) and the potentially more plastic tran-
scriptome of metastasis-seeding subclones, we next aimed to 
determine if at least a subset of the transcriptional changes 
acquired during primary tumor clonal evolution were main-
tained in established metastases. In this line, we first observed 
that the relationship between clonal and transcriptional dis-
tance is maintained when considering primary–metastasis 

pairs (LME P-value < 0.001, corrected for differences in purity 
between biopsies; Supplementary Fig. S9). Further, uniquely 
to the TRACERx Renal cohort, we can assign the clonal  
origin of metastasis to specific primary tumor regions (9). We 
observed that expression patterns in metastasis itself were 
closer to the metastasis-seeding than nonseeding regions in 
the matched primary tumor (Fig. 2F). This might imply that  
a significant portion of the transcriptional changes observed in 
established metastases were progressively acquired through 
heritable changes accrued during primary tumor evolution. 
Consequently, the primary sample with the least clonal dis-
tance to metastasis may best reflect the tumor-specific tran-
scriptional signature of a metastatic sample (Supplementary 
Fig. S10) but not necessarily TME-related transcriptional 
signatures.

Finally, to understand recurrent trends in the transcrip-
tional evolution from earlier to later clones within TRACERx 
Renal, we assigned a gene expression profile to individual 
clones (see “Gene Expression and TME Assignment to Indi-
vidual Tumor Clones”; Supplementary Fig. S11A and S11B). 
Utilizing the gene expression profiles of each clone, we per-
formed single-sample gene set enrichment analysis (ssGSEA) 
of 50 hallmark signatures, which we collapsed into seven func-
tional groups (signaling, proliferation, pathway, metabolic, 
DNA damage, development, cellular component), as done in a 
previous study (Supplementary Table S4; ref. 6). Later-emerging 
clones were characterized by increased proliferative potential, 
activation of the FAS-pentose phosphate and omega oxida-
tion metabolic pathways and unfolded protein response, and 
reduced DNA damage repair capacity and activation of sig-
naling pathways such as PI3K/AKT/mTOR (Fig. 2G; Supple-
mentary Table S5).

The increase in proliferation along the clonal structure 
suggests that later-emerging clones in ccRCC exhibit greater 
proliferative capacity than earlier ones. This might imply that 
at least some of the positive selection is driven by increased 
tumor’s proliferative potential, which would facilitate clonal 
expansion. This trend is exemplified in patient K243, in whom 
we observe a sequential increase in proliferation in later- 
emerging clones (Fig. 2H) and comparable proliferative poten-
tial of clones that expanded and were maintained in parallel.

Somatic Copy Number Drivers of Metastatic 
Progression in ccRCC Induce Recurrent 
Transcriptional Changes

Loss of chromosomes 9p and 14q has been identified as a 
hallmark genomic driver of ccRCC metastasis, with the dis-
ruption of genes within 9p21 and 14q31 loci putatively me-
diating their phenotypic impact and selective advantage (3). 
However, the mechanisms by which they confer metastatic 
competence is unknown. Previous attempts to understand 
their transcriptional impact compared tumors from different 
patients, introducing potential patient-specific confounders 
(10, 11). To address this shortcoming, we compared samples 
from the same primary tumor with or without 9p loss and/or 
14q loss (see “Methods”; Fig. 3A).

Both 9p and 14q loss correlated with changes in several 
transcriptional programs (Fig. 3B; Supplementary Fig. S12), 
albeit 9p loss correlated with more profound transcriptional 
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pairs of primary tumor samples with increasing clonal distances, defined as the distance between clones located in two different monoclonal regions. 
F, Transcriptional distance between metastatic samples and paired primary samples depending on whether the primary region contained a seeding clone 
(55 nonseeding primary–metastasis pairs; 27 seeding primary–metastasis pairs). G, Association of clone gene expression (see “Gene Expression and TME 
Assignment to Individual Tumor Clones” and Supplementary Fig. S11A and S11B) of the 50 hallmark gene signatures grouped into 7 functional groups 
[as defined by Martinez-Ruiz and colleagues (6)] and distance to the MRCA of the patient’s tumor. H, Phylogenetic tree for patient K243—previously 
constructed by Turajlic and colleagues (2) using identified somatic alterations—and ssGSEA scores for proliferation signature identified in bulk RNA-seq. 
Green nodes indicate clones with a gene expression profile assigned in this study (see “Gene Expression and TME Assignment to Individual Tumor Clones”), 
and gray clones only have genetic information obtained previously within above study (3), allowing full reconstruction of the phylogenetic tree. ssGSEA 
scores refer to cell proliferation inferred with the signature from Motzer and colleagues (45). Across all panels, LME (linear mixed-effects model) is used 
to control for inclusion of multiple samples from the same patient by including patient of origin as a random covariate. In (E and F), red points indicate 
mean values; boxes extend from the lower to the upper quartiles, with the line inside the box representing the median, with whiskers indicating data within 
1.5 times the IQR from the quartiles; violins represents the distribution of values per group. In (A and C), for patients with more than one primary–primary, 
primary–normal, or primary–metastasis pair, the median transcriptional distance for each type of sample pair is calculated.
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Figure 3.  Canonical ccRCC subclonal drivers and aneuploidy burden drive specific changes to the tumor transcriptome. A, Illustration of the procedure 
to analyze the transcriptional association of a subclonal copy number alteration without the confounding effect of patient-specific factors followed in this 
study. B, Association of transcriptional changes in 50 different hallmark signatures with subclonal 9p and 14q loss in ccRCC. FDR was calculated by cor-
recting P-values obtained via paired Wilcoxon tests with the Benjamini–Hochberg method between WT and mutant regions (subclonal 9p loss: 20 patients 
with 44 WT and 27 mutant samples; subclonal 14q loss: 26 patients with 45 WT and 41 mutant samples). Negative and positive associations are colored in 
blue and red, respectively. Highlighted squares indicate significant associations (FDR < 0.05). C, CDKN2A and CDKN2B expression (y-axis), quantified by 
log10 (TPM + 1), across 231 TRACERx Renal samples with different copy number status: homozygous deletions (HD, 7 samples from 4 patients), heterozy-
gous deletion (LOH: 101 samples from 49 patients), or no loss (WT, 122 samples from 53 patients) at the 9p21 locus. P-values obtained via Wilcoxon test. 
Boxes extend from the lower to the upper quartiles, with the line inside the box representing the median, with whiskers indicating data within 1.5 times the 
IQR from the quartiles. D, Differential expression analysis of genes upstream, within, and downstream of the cGAS–STING pathway (Supplementary Table 
S6) between tumor samples with high and low wGII (weighted genome instability index, a measure of aneuploidy). E and F, Representative MIF images of 
TRACERx Renal tumor samples (E) with low wGII and (F) with high wGII. PAX8, a marker of ccRCC cells, is colored in magenta, ENPP1 is in yellow, and DAPI 
is in blue. G, Kaplan–Meier survival curves of overall survival stratified by high (top 75%) or low (bottom 75%) expression of SLC19A1 or ENPP1 and wGII 
(above and below median) in TRACERx Renal. For patients with more than one sample in TRACERx Renal, maximum wGII and SLC19A1 and ENPP1 expres-
sion values were considered. P-value is obtained by a log-rank test.
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dysregulation. In particular, samples with either 9p LOH or 
9p21 homozygous deletion showed a marked reduction in 
the expression of interferon alpha and interferon gamma re-
sponse genes (FDR < 0.01; Fig. 3B; Supplementary Fig. S13A–
S13C). The cis downregulation of the 9p21 IFN I gene cluster 
upon copy number loss might partially underpin this associ-
ation (Supplementary Fig. S13D), as mechanistically demon-
strated in in vivo models (12). Further, 9p loss was strongly 
associated with increased proliferative capacity (Fig. 3B; Sup-
plementary Fig. S12). Because 9p and 14q losses can co-occur 
in our cohort (Fisher’s test P-value < 0.001), we further in-
terrogated the specificity of this association using single-cell 
RNA-seq data from 954,023 cells, curated from 8 previously 
published studies (see “Methods”; refs. 8, 13–19). By apply-
ing InferCNV, we detected individual cells with 9p and/or 14q 
loss, including 5 samples with subclonal loss of 9p and no 14q  
loss and 13 samples with subclonal 14q loss without 9p 
loss. Differential expression analysis demonstrated that 9p 
loss alone, and not 14q loss, consistently associates with 
increased proliferation (Supplementary Fig. S14A–S14F). 
Increased proliferation might be driven by the observed 
cis downregulation of CDKN2B (P-value = 0.01)—but not 
CDKN2A (P-value = 0.79)—upon 9p loss (Fig. 3C). Taken 
together, this might suggest a profound impact of 9p loss 
in the acquisition of proliferative potential and immune 
evasion that could rationalize its strong association with 
metastatic competence.

To understand how increased proliferation contributes 
to clinical outcomes in the context of 9p loss, we compared 
all 9p lost tumors with higher and lower proliferation levels, 
observing that those with a higher proliferation capacity had 
worse outcomes [overall survival HR = 3.08 (95% CI, 1.00–9.45); 
Supplementary Fig. S15A and S15B], whereas those with 
lower proliferation index had a more favorable outcome  
despite harboring 9p loss. We identified that 89% (16 out  
of 18) of these high proliferation cases bore either LOH 
(15/16) or homozygous deletion (1/16) of 9p. This suggests 
that, to acquire metastatic competence, 9p lost subclones 
might require the induction of specific phenotypic changes, 
such as increased cell proliferation, which are not uniquely 
driven by a second focal loss at 9p. This observation has  
implications for the utilization of 9p loss as a biomarker for 
risk stratification, suggesting its utility may be enhanced 
when integrated with phenotypic measurements.

Although 9p and 14q loss were the strongest individual  
SCNAs associated with metastasis in ccRCC (3), we previ-
ously described that, compared with those without meta-
static competence, metastasizing subclones generally have 
higher aneuploidy burden, reflecting underlying chromo-
somal instability (CIN; ref. 3). Elevated CIN is expected 
to lead to the activation of the cGAS–STING pathway via 
cGAMP, which can trigger an antitumor immune response 
(20). It is unclear how ccRCC tumors circumvent these neg-
ative consequences of CIN.

To resolve this paradox in ccRCC, we assessed how the  
expression of genes related to the cGAS–STING response 
(Supplementary Table S6) changes with increasing aneu-
ploidy. We controlled for patient-specific factors by comparing 
regions with high and low aneuploidy (measured by weighted 
genome instability index, wGII) within the same tumor.  

Unexpectedly, we noted a decrease in the expression of 
CXCL11, CXCL10, and CXCL9—chemokines usually triggered 
by cGAS–STING activation in healthy cells—in tumor regions 
with high aneuploidy (Fig. 3D), compared with those with 
lower aneuploidy, suggesting that canonical cGAS–STING 
activation is somehow bypassed. In the same differential ex-
pression analysis, we observed the overexpression of SLC19A1  
and ENPP1 (Fig. 3D) in high aneuploidy regions and con-
firmed ENPP1 expression to be specific to tumor cells  
(expressing PAX8) by multiplex immunofluorescence (MIF; 
Fig. 3E and F; Supplementary Fig. S16A and S16B). ENPP1 
is an ectonucleotidase which degrades cGAMP, a potent  
immune stimulator released following the detection of cyto-
solic DNA by cGAS. cGAMP is degraded into immune sup-
pressor adenosine (21). SLC19A1 is a cGAMP importer, and 
conceivably its overexpression by ccRCC cells could lead to 
greater tumor reabsorption of cGAMP by tumor cells and 
reduction of extracellular cGAMP and its internalization by 
immune cells, limiting an effective antitumor response. Sup-
porting this hypothesis, we observed that highly aneuploid 
tumor regions overexpressing SLC19A1 and/or ENPP1 show 
features of an immunosuppressive TME (Supplementary 
Fig. S17A–S17D) marked by a decrease in T effector func-
tion and an increase in myeloid inflammation.

Thus, we identified another important phenotype under 
selection during tumor progression and reasoned that activa-
tion of cGAS–STING suppressors in highly aneuploid ccRCC 
would impact clinical outcomes. Supporting this, tumors 
with high wGII and elevated SLC19A1 and ENPP1 expression 
showed the shortest time to progression in both TRACERx 
Renal and TCGA-kidney renal clear-cell carcinoma (KIRC)  
cohorts (Fig. 3G; Supplementary Fig. S18A–S18C). Notably, 
in TRACERx Renal, patients with high wGII but low SLC19A1 
and ENPP1 expression had the most favorable prognosis,  
suggesting that increased CIN may not benefit ccRCC pro-
gression without effective suppression of immune activation 
triggered by CIN. High SLC19A1 expression also correlated 
with poorer prognosis across various tumor types, comple-
menting previously reported pan-cancer prognostic associa-
tions with ENPP1 expression (Supplementary Fig. S19A and 
S19B; ref. 21).

Evolution of the TME
Matched genetic and transcriptional data also offer the op-

portunity to explore the currently unclear interplay between 
TME and genetic evolution in ccRCC. To address this, we esti-
mated the abundance of distinct immune cell subpopulations 
in the TRACERx cohort using an immune deconvolution tool 
(22) that was validated using histopathological estimates 
(Supplementary Fig. S20A and S20B).

First, we sought to interrogate the relationship between 
TME composition to different evolutionary trajectories. In the 
context of the TRACERx Renal study, we previously described 
seven evolutionary subtypes—BAP1-driven, PBRM1–SETD2, 
PBRM1–SCNA, PBRM1–mTOR, VHL wild-type (WT), multi-
ple truncal drivers, and nondriver subtype—characterized by 
different patterns of driver event ordering, co-occurrence,  
and mutual exclusivity at the clone level (see Supplementary 
Note S1 for a more comprehensive description of evolutionary 
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subtypes; refs. 2, 3). Comparing the abundance of different 
immune cell subpopulations for samples in each evolution-
ary subgroup against all others (see “Methods”), we could  
observe that different evolutionary trajectories were charac-
terized by distinct immune TME profiles (Fig. 4A). Tumors 
on a VHL WT trajectory exhibited a notable depletion of en-
dothelial cells and all immune cells, particularly cytotoxic 
cells (e.g., NK cells and CD8+ T cells). By contrast, BAP1-
driven tumors showed higher levels of immune infiltration, 
especially by myeloid cells, with low levels of endothelial 
cells. Tumors with a branched pattern of evolution, including 
PBRM1–mTOR, PBRM1–SETD2, and PBRM1–SCNA trajec-
tories, displayed an overall increase in immune infiltration 
as well. However, the pattern of infiltration varied: PBRM1–
SCNA tumors had a relatively higher abundance of myeloid 
cells, whereas PBRM1–mTOR and especially PBRM1–SETD2 
tumors had a higher relative abundance of cytotoxic cells, 
including CD8+ T cells. Taken together, this could suggest 
that either the TME at least partly shapes the evolutionary 
trajectory or traversing a certain trajectory and its somatic 
alterations ultimately remodels the TME.

Next, we interrogated intratumor TME heterogeneity 
across TRACERx Renal patients. Hierarchical clustering 
of RNA-seq deconvolution estimates identified three clusters 
of samples representing high, intermediate, and low levels of 
overall immune infiltration (Fig. 4B). For 32 (50%) patients, 
we observed variable immune infiltration patterns across 
primary tumor regions (Fig. 4B). Across the TRACERx Renal 
cohort, the range of TME ITH varied extensively (Supplemen-
tary Fig. S21A and S21B), with patients presenting higher 
TME ITH showing a nonsignificant trend to poorer outcomes 
(Supplementary Fig. S21C and S21D). This shows that TME 
ITH is pervasive in ccRCC.

To better understand the nature of this TME ITH, we clas-
sified the TME of individual primary tumor samples as an-
titumor or immunosuppressive (see “Methods”). Across all 
229 pairs of samples from the same patient in the TRACERx 
Renal cohort, we detected 71 pairs with antitumor ↔ immu-
nosuppressive switches, 54 pairs with conserved antitumor 
TME, and 104 pairs with conserved immunosuppressive TME  
(Fig. 4C). To identify whether these switches in the TME occur 
in a specific direction during tumor evolution, we tested their 
enrichment in 51 sample pairs in which one sample harbors a 
terminal clone—representing an end stage of tumor evolution 
at sampling—and the other contains a nonterminal clone. 
This analysis revealed 12 antitumor → immunosuppressive 
transitions (Fig. 4D), with concomitant depletion of cytotoxic 
infiltration (Supplementary Fig. S22A and S22B), supporting 
progressive immune dysfunction throughout evolution of in-
dividual ccRCCs.

In agreement with the pattern we observed of IFN down-
regulation in tumor regions with 9p loss, we identified 24  
antitumor → immunosuppressive transitions between 40 
samples pairs in which one sample had an intact 9p chromo-
some arm and the other sample harbored 9p loss (Fig. 4E). 
Finally, motivated by the observation of extensive parallel evo-
lution of SETD2 mutations (2) and the possibility that this 
is driven by a specific niche, we evaluated TME transitions 
co-occurring with SETD2 mutation across 47 pairs of samples 
in which one sample was SETD2 WT and the other showed 

a SETD2 mutation. We observed 15 antitumor → immuno-
suppressive transitions from WT to mutant SETD2 regions  
(Fig. 4F). This suggests that SETD2-mutant clones are located 
in specific immunosuppressive pockets of overall highly cyto-
toxic tumors following a PBRM1–SETD2 trajectory (Fig. 4A). 
The enrichments of antitumor → immunosuppressive tran-
sitions co-occurring with 9p loss and SETD2 alterations were 
corroborated by lower cytotoxic T-cell infiltration, which we 
did not identify for other recurrently subclonal drivers (Sup-
plementary Fig. S22C and S22D, S23A and S23D).

Evolution of Immune Adaptive Response
Recent studies have highlighted the utility of dissecting 

adaptive immune, especially T-cell, responses in ccRCC pa-
tients to identify those likely to have a favorable response to 
ICB (13, 23). To gain a deeper understanding of the evolution 
of T- and B-cell responses in treatment-naive ccRCC tumors, 
we employed MiXCR (24, 25) to extract T- and B-cell recep-
tor (TCR and BCR, respectively) repertoires from bulk RNA-
seq data within the TRACERx Renal cohort. This approach 
showed the potential to both identify major TCR clones and 
estimate TCR clonality in ADAPTeR (23), an independent  
cohort with paired bulk TCR and RNA-seq data (Supplemen-
tary Note S2). In the TRACERx Renal cohort, MiXCR iden-
tified a total of 16,582 unique TCR clonotypes (median: 55 
TCR unique clonotypes per sample; Supplementary Table S7) 
and 159,801 unique BCR clonotypes (median: 464 unique 
clonotypes per sample; Supplementary Table S8) across 243 
ccRCC and kidney-adjacent normal samples from 79 patients.

We first analyzed the similarity of the T- and B-cell reper-
toire across different tumor samples from the same patient. 
TCR and BCR repertoires varied significantly across different 
tumor regions, with a maximum median similarity of 60% 
and 61% in BCR and TCR repertoires, respectively (Fig. 5A). 
TCR and BCR repertoire similarity did not associate with pa-
tient prognosis individually (Supplementary Fig. S24A and 
S24B) or in combination (Fig. 5B).

Despite the intratumoral clonal diversity observed in T- and  
B-cell compartments, our findings indicate that a fraction of 
T- and B-cell clones present in normal and metastatic samples 
are shared with their corresponding primary tumor. Specifi-
cally, 68% and 83% of metastases contained at least a TCR and 
BCR clone also found in the primary tumor. In the adjacent 
normal kidney tissue, these percentages were 42% for primary 
tumor TCR clones and 87% for primary tumor BCR clones 
(Fig. 5C; Supplementary Fig. S25). Our results suggest that 
either identical bystander T- and B-cell clones are present in 
distant locations or that tumor-specific T and B cells migrate 
to metastatic sites, either from the primary tumor or circula-
tion. Supporting the latter hypothesis, T-cell clones identified 
in primary tumor samples and matched metastatic or normal 
samples exhibited higher clonality within the primary tumor 
(Supplementary Fig. S26), consistent with their expansion 
during adaptive antitumor immune response.

We next sought to integrate the tumor phylogenetic struc-
ture to gain deeper insights into the drivers of T- and B-cell 
responses. We posited that if adaptive immune responses target 
heritable (neo)antigens, we would observe a progressive di-
versification of the TCR or BCR repertoire as the neoantigen 
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repertoire changes throughout tumor evolution. To inves-
tigate this hypothesis, we correlated the clonal distance be-
tween pairs of tumor regions with the similarity of their TCR 
or BCR repertoire. We did not detect any association between 
clonal distance and BCR similarity (Supplementary Fig. S27), 
but we did find a strong association between TCR similarity 
and clonal distances (Fig. 5D) not fully reconciled by alterna-
tive metrics of intratumor genetic heterogeneity or burden of 
somatic alterations (Supplementary Fig. S28). This indicates 
a dynamic T-cell response propelled by heritable changes— 
genetic or epigenetic—accumulated during ccRCC evolution. 
Notably, we observe a greater TCR similarity between metas-
tases and their clonal ancestor in the primary tumor (Fig. 5E) 
than the more distant clones, raising the possibility that TCR 
clones targeting antigens acquired during primary tumor 
evolution also infiltrate metastases, migrating either from the 
primary tumor or from the periphery.

HERV Transcriptional Activity during ccRCC 
Evolution

Derepression of endogenous retroelements expression re-
mains a potential, yet unresolved, source of immunogenicity 
in ccRCC (26) and additionally can contribute to tumorigen-
esis by different means—including tumor-promoting human 
endogenous retrovirus proteins, induction of changes to the 
host cellular gene expression, and contribution to insertional 
mutagenesis and/or chromosomal rearrangements (27, 28). 
The expression of human endogenous retroviruses (HERV) 
has been associated with immunotherapy responses in ccRCC 
(29, 30), although it is unclear whether this association is 
direct (23). HERV-E antigens are of particular interest, with 
clinical trials of adoptive transfer of chimeric antigen re-
ceptor (CAR) T cells targeting these elements underway 
in ccRCC patients (31). Despite this increasing interest in 
HERVs, it remains unknown how the expression of HERVs 
evolves in ccRCC and what subset of HERVs can drive anti-
tumor responses.

To investigate transcriptional derepression of HERVs in 
the context of clonal evolution, we quantified HERV expres-
sion within the TRACERx Renal cohort using a previously 
described de novo assembled cancer transcriptome (32). This 
approach takes into account the structure of transcripts 
overlapping repeat elements, which allows more accurate 
quantification. In particular, we identified 615 transcripts 
that overlap annotated HERVs and other long terminal re-
peat (LTR) elements.

UMAP dimensionality reduction on this set of transcripts 
revealed patterns of intra- and intertumor heterogeneity akin 
to those observed for the entire tumor transcriptome (Sup-
plementary Fig. S29). Expression or exonization of HERV/
LTRs is thought to be driven by epigenetic changes associated 
with cancer progression, and some HERVs are thought to be 
upregulated through VHL loss (33, 34). Given the potential 
effect of multiple ccRCC driver genes (VHL, PBRM1, SETD2, 
BAP1) on HERV/LTR expression, we tested the association of 
global expression of these elements with the mutation status 
of the said genes. Mutation or methylation of VHL, but not 
the genes mutated subsequently in ccRCC evolution, associ-
ated strongly with median HERV/LTR expression (Fig. 6A), 

suggesting that the induction of HERV/LTR expression is an 
early event in ccRCC evolution. Subsequently, HERV/LTR ex-
pression can also be modulated by copy number alterations 
of their genetic locus, with 6.1% showing a significant (FDR 
< 0.05) association with increased copy number (Supplemen-
tary Fig. S30). We further compared HERV/LTR expression 
in VHL-altered versus VHL WT tumors and adjacent normal  
tissue. Only five transcripts overlapping ERV1 and ERVL LTR 
elements were found significantly upregulated in VHL mutant 
or methylated tumor samples relative to WT VHL and normal 
samples (Fig. 6B; Supplementary Fig. S31A–S31E), suggesting 
global derepression of HERV/LTR elements rather than dere-
pression of only a subset of retroelements upon VHL loss.

To investigate whether HERV expression is linked to alter-
ations in the TME, we examined the correlation between the 
abundance of different cell populations and both the overall 
median expression of HERV/LTR overlapping transcripts and 
the expression of two specific HERV-E members (on Chr6q15 
and Chr19q12) proposed to associate with antitumor T-cell 
responses in ccRCC (23, 30, 35, 36). The overall HERV/LTR  
expression demonstrated a positive association with in-
creased tumor purity, confirming that a significant propor-
tion of HERV/LTR transcripts are expressed within tumor 
cells. Overall HERV/LTR expression did not associate pos-
itively with any immune cell subtype and even exhibited 
a negative correlation with distinct myeloid cell subsets  
(eosinophils and neutrophils T cells and NK cells; Supplemen-
tary Fig. S32). Similarly, the expression of the two putatively 
immunogenic HERV-E members known to be upregulated 
in ccRCC was not correlated positively with any specific cell 
population in the TME, rather the expression of HERV-E 
Chr6q15 (also known as ERVE-4) was negatively correlated 
with cytotoxic NK cells (Supplementary Fig. S32). Moreover, 
overall HERV/LTR expression did not correlate with TCR 
or BCR diversity and only weakly correlated with the inter-
feron (IFN) signature (Fig. 6C), suggesting that a potential 
contribution of HERV/LTR expression to tumor innate and 
adaptive immunogenicity cannot be easily inferred by joint 
quantification of the median expression of all ccRCC-specific 
HERVs.

Finally, we explored the correlation between the expression 
levels of HERV/LTR transcripts and clinical outcomes. Inter-
estingly, despite its lack of association with immune metrics, 
elevated overall expression of HERV/LTR transcripts was 
associated with improved survival regardless of cancer stage 
(Fig. 6D). At the level of individual HERV/LTR transcripts, we 
did not observe any significantly associated (i.e., FDR < 0.05) 
with survival and only 59 and 13 associated positively and 
negatively, respectively, with improved outcomes with a nom-
inal P-value <0.05 (Supplementary Table S9). For the top five 
individual HERV/LTR elements, we observed that they were 
embedded within or near protein-coding and noncoding 
genes (Supplementary Fig. S33A–S33E), instead of being in-
dependently transcribed, potentially immunogenic, HERVs. 
In that line, expression of immunogenic HERVs HERV-E 
Chr6q15 and HERV-E Chr19q12 was not significantly associ-
ated with survival (Supplementary Table S9). Taken together, 
this suggests that the association between higher median 
HERV/LTR expression and survival is not driven by any in-
dividual HERV/LTR element or by a detectable more active  
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immune response co-occurring with global derepression of 
these elements. Instead, only a subset of specific HERVs might 
trigger immune responses, and the association between global 
HERV/LTR expression and survival might be attributed to tu-
mor-intrinsic effects of dysregulated HERV/LTRs (27).

Discussion
Through a paired genomic–transcriptomic analysis of 243 

samples from 79 patients, we present the most comprehen-
sive description to date of nongenetic evolution patterns in 
ccRCC. This study contextualizes a large body of prior re-
search describing genetic ITH and evolution in this disease 
(1–3, 7, 9, 37).

Our findings reveal nongenetic sources of intratumor 
variation that a genomic-only approach would have missed.  
Specifically, we demonstrate that a significant portion of the 
transcriptional heterogeneity observed within patients can-
not be accounted for by major ccRCC driver mutations or 
copy number alterations, consistent with recent studies in 
colorectal (5) and non–small cell lung cancer (6). The remain-
ing contributors to such variation warrant further investiga-
tion, likely including noncoding genetic variation, epigenetic 
alterations, and phenotypic plasticity (38). The latter two, in 
particular, offer the potential for rapid cell state transitions, 
and it remains unknown how much they contribute to tumor 
adaptation to therapy (39) and other selective pressures in 
ccRCC.

Moreover, we uncovered recurrent patterns of transcrip-
tional evolution in ccRCC, which emerge during primary 
clonal evolution and are, at least in part, preserved follow-
ing metastatic spread. These findings suggest a convergent 
evolution toward specific phenotypic traits. In particular, we 
noted increased cell proliferation, metabolic reprogramming, 
and elevated expression of potential cGAS–STING repressors, 
SLC19A1 and ENPP1, amid high aneuploidy from earlier to 
later clones. These dynamics might offer new potential ther-
apeutic targets, such as ENPP1 inhibition in the context of 
high aneuploidy (21) or the use of CDK4/CDK6 inhibitors 
(40) in tumors with high proliferation and co-occurring 
CDKN2B and CDKN2A loss (i.e., 9p loss). Additionally, we 
demonstrate how transcriptional patterns can complement 
and refine existing genetic biomarkers in ccRCC [e.g., 9p loss, 
aneuploidy burden (3)] by providing context and insight into 
their phenotypic effects.

Our study also highlights the association between evolu-
tionary trajectories and TME composition, suggesting a 
bidirectional relationship in which genetic drivers of an evo-
lutionary path influence TME composition or the TME itself 
exerts selective pressures that shape driver acquisition. Sup-
porting the first hypothesis, we observed that VHL WT tumors 
exhibited a markedly different TME, underscoring the early 
influence of this driver on shaping TME composition. For the 
second hypothesis, we found that tumors on a PBRM1–SETD2 
trajectory displayed an antitumor TME, yet SETD2-mutant 
clones tended to emerge within immunosuppressive pockets. 
This may indicate SETD2 immuno-editing by an antitumor 
TME, aligning with our previous observations of geographi-
cally confined parallel evolution of SETD2 mutations (2). 
Notably, immune infiltration patterns in PBRM1–SETD2  

tumors differed from other PBRM1-associated trajectories 
(e.g., PBRM1–mTOR, PBRM1–SCNA), suggesting that the 
conflicting reports regarding PBRM1 as a biomarker for ICB 
response in ccRCC (41–44) may depend on its evolutionary 
context.

In addition, we describe the longitudinal evolution of the 
TME through joint analysis of tumor phylogenetic struc-
ture and TME composition. We observed a recurrent trend 
of progressive immune dysfunction across tumor evolution, 
strongly linked to frequent and recurrently late ccRCC drivers 
9p loss and SETD2 mutations. This pattern mirrors previously 
described immune dysfunction through clinical disease pro-
gression and raises questions on the optimal timing of ICB 
therapy (14). Because we described the TME using signatures 
of T effector function predicting ICB response (45), our anal-
yses imply that ccRCCs would offer an improved treatment 
response early in their evolution, supporting the neoadjuvant 
paradigm. Additionally, we observed that clonal dynamics of 
the T-cell compartment mirrored tumor clonal structure, in-
dicating heritability of the antigenic source in ccRCC. Such 
interlink persisted upon metastatic dissemination, possibly 
suggesting that at least a fraction of tumor-specific T-cell 
clones target (neo)antigens acquired during primary tumor 
growth and travel to distant metastases, either from the pri-
mary tumor or from blood.

One of the potential neoantigenic sources in ccRCC is 
HERVs. However, their overall expression did not associate 
neither with cytotoxic immune infiltration nor with T- and  
B-cell clonal structure. This suggests only a few specific HERVs 
are antigenic, requiring dedicated identification and further 
validation. However, the overall transcriptional activity of 
ccRCC-specific HERV/LTR overlapping transcripts was found 
here to associate with longer progression-free survival. Given 
the lack of association between median HERV/LTR expression 
and TME composition and interferon response, we specu-
late that this survival benefit might stem from tumor-intrinsic  
effects of dysregulated HERV/LTRs that modulate tumor 
growth without significantly altering immunogenicity (27).

This study has some limitations. We did not address all 
forms of transcriptional variation, such as alternative splic-
ing and RNA editing. Additionally, despite the unprecedented 
size of our cohort, we were underpowered to investigate the 
transcriptional impacts of less frequent subclonal drivers. 
Finally, the absence of matched epigenetic data limited our 
ability to explore how much of the unexplained transcrip-
tional variation is driven by epigenetic changes. Nonetheless, 
our findings underscore nongenetic evolution as a significant 
contributor to functional ITH in ccRCC, highlighting the 
necessity of multiomic approaches to fully understand and 
contextualize ccRCC evolution.

Methods
Data Generation and Processing

TRACERx Renal Cohort.  The TRACERx Renal study (NCT
03226886) is an ethically approved prospective cohort study 
(National Health Service Research Ethics Committee approval 11/
LO/1996) sponsored by the Royal Marsden NHS Foundation Trust 
and coordinated by its Renal Unit. The study recruits patients at the 
following sites: Royal Marsden NHS Foundation Trust, Guy’s and St 
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Thomas’ Hospital NHS Foundation Trust, Royal Free Hospital NHS 
Foundation Trust, and Western General Hospital (NHL Lothian). An 
extension cohort of primary and metastatic pairs was accessed under 
the approval of the Basque Country Research Ethics Committee, Hos-
pital Universitario Cruces (Ref CEIC-Euskadi PI2015101).

Inclusion criteria for the study were (i) age greater or equal than  
18 years, (ii) patients with histologically confirmed ccRCC, or sus-
pected ccRCC, proceeding to surgery (nephrectomy or metastasec-
tomy), (iii) medical and/or surgical management in accordance with 
national and/or local guidelines, and (iv) written informed consent to 
permit fresh tissue sampling, blood collection, and access to archived 
diagnostic material and anonymized clinical data.

Exclusion criteria for the study were (i) any concomitant medi-
cal or psychiatric problems which the investigator deemed would 
prevent completion of treatment or follow-up and (ii) lack of ad-
equate tissue.

For the purpose of this study, additional eligibility criteria were 
applied as in a previous publication (2), including (i) confirmed his-
tologic diagnosis of ccRCC, (ii) no familiar history of ccRCC, and (iii) 
no identified germline ccRCC predisposition syndrome.

Every participant in the study was assigned a study identity num-
ber (ID), with a prefix (“K”) followed by a string of three numbers. All 
human samples were associated with the study ID to allow integra-
tion of multiple datasets while keeping patient identity anonymous 
on a centralized database.

The cohort in this study is representative of patients eligible for 
curative or cytoreductive nephrectomy and spans multiple disease 
stages. In total, we sequenced 243 samples (191 primary tumor, 22 
metastatic, 18 tumor thrombus, and 12 tumor-adjacent normal 
samples) from 79 patients (18 at stage I, 4 at stage II, 25 at stage III, 
and 27 at stage IV). For 14 patients, only 1 tumor sample underwent  
RNA-seq; the remaining 65 patients had corresponding RNA-seq data 
for at least 1 tumor sample (median: three samples per patient, range: 
3–13). Matched full demographic, clinical, genomic, and evolutionary 
data for the samples under study are available in a previous TRACERx 
Renal publication (2, 3). Both male and female subjects were recruited 
to the TRACERx Renal study. Approximately 70% of patients in the 
subset analyzed in this study were male, consistent with the reported 
twice as high incidence of clear-cell renal cell carcinoma in males. Sex 
was not used as a covariate in any statistical analysis in this study. 
Patient weight was not recorded in the TRACERx Renal and hence is 
not included as a covariate in this study. Patient age was recorded and 
followed a normal distribution in this study, with a median partici-
pant age of 64 years old. A more comprehensive description of how 
prior results are inputted in this study is provided in Supplementary 
Note S1.

Sample Collection.  Sample collection was described in previous 
TRACERx Renal publications (2, 3). In brief, all surgically resected 
samples were reviewed macroscopically by a pathologist to guide mul-
tiregional sampling. Tumors were dissected along the longest axis, 
and regions were sampled from the tumor slice using a 6-mm punch 
biopsy. Each biopsy was split along the longest axis for snap-freezing 
in liquid nitrogen and formalin fixation. Frozen samples were stored 
at −80°C.

RNA Extraction.  DNA and RNA were co-extracted from sam-
ples in previous TRACERx Renal publications (2, 3). DNA and 
RNA were purified using the AllPrep DNA/RNA Mini Kit (Qiagen). 
Briefly, a 2-mm3 piece was added to a 900-µL lysis buffer and ho-
mogenized using a TissueRuptor (Qiagen) or TissueLyser (Qiagen) 
followed by a QIAshredder (Qiagen). Purification was performed 
according to the manufacturer’s recommendation either manually 
or on a QIAcube (Qiagen). RNA quality and yield were measured 
using the TapeStation and Qubit Fluorometric Quantification 
(Thermo Fisher Scientific).

Library Preparation and Sequencing.  Tumor samples with suffi-
cient RNA quality (RNA integrity score ≥5) were submitted to Oxford 
Genomics Centre or processed by the Advanced Sequencing Facili-
ty at the Francis Crick Institute. RNA samples were normalized to  
100 ng, and libraries were constructed using the TruSeq Stranded 
Total RNA Library Prep Gold kit (Illumina) according to the man-
ufacturer’s protocol. Samples were specifically depleted for both cy-
toplasmic (5S, 5.8S, 18S, and 28S) and mitochondrial (12S and 16S) 
rRNA species.

Libraries were indexed with unique dual indexes (IDT for Illumina 
TruSeq RNA UD Indexes, 20022371) and PCR amplified using 15 cy-
cles. Library quality and fragment size distributions were controlled 
on a TapeStation 4200 instrument (Agilent). Samples were pooled 
before paired-end sequencing on a HiSeq 4000 or NovaSeq 6000 in-
strument (Illumina) with a target coverage of 50 million reads and 
100-bp paired-end read length.

RNA-seq Alignment and Gene Expression.  The quality of the  
RNA-seq reads was estimated using FastQC (RRID:SCR_014583, 
v.0.11.2). Next, fastq files were aligned to the UCSC hg19 human ref-
erence genome using STAR (RRID:SCR_004463; v.2.7.4a; ref. 46) with 
default parameters, yielding a BAM per tumor sample. Following this, 
gene expression was measured using RSEM (RRID:SCR_000262; 
v.1.3.3; ref. 47), which estimated count and transcript per million 
(TPM) expression values. Subsequently, we applied an expression fil-
ter to only keep genes with 1 TPM in at least 20% of the samples, 
removing a total of 6,583 genes from the original 23,299 genes, hence 
resulting in a final total of 16,716 genes.

Finally, we normalized raw gene counts estimated by RSEM us-
ing the variance-stabilizing transformation (VST) method from the 
DESeq2 package (RRID:SCR_015687; v.1.40.2; ref. 48). This method 
assumes a negative binomial distribution to fit a dispersion-mean dis-
tribution to the input count data, and it outputs homoscedastic—i.e., 
with constant variance across increasingly high mean gene count 
values—and library-size normalized count values. These normalized 
counts were used in all downstream applications, unless otherwise 
specified.

Immunohistochemistry Quantification of Macrophages and T Cells.  
For the TRACERx Renal cohort, we prepared tissue sections from 
376 tumor samples across 24 patient cases, chosen to represent dif-
ferent tumor stages. Each sample was sectioned to a thickness of  
4 µm and mounted on slides. We then performed single chromogen 
immunohistochemistry (IHC) staining for CD3 (RRID:AB_563541) 
and CD68 (RRID:AB_2892734) on these sections, with the specifi-
cations presented in Supplementary Table S10.

Cell quantification was performed in QuPath (RRID:SCR_018257; 
ref. 49). Manual segmentation of viable tumor tissue within the IHC-
stained image and automated positive cell counts were performed. 
Cell counts are reported as the number of positive cells per µm2.

ENPP1 MIF and Quantification.  Prior to staining, two 3-µm 
tissue sections of tumor samples from 10 patients of the TRACERx 
Renal cohort identified as either high wGII high ENPP1 (n = 5) or low 
wGII low ENPP1 (n = 5) were cut. The first slides were designated for 
H&E staining, the following for MIF.

For the MIF panel, each primary antibody used was optimized 
in single-plex IHC, and all antibodies were then combined to create  
a six-marker multiplex panel using the Bond autostainer system  
(Leica Bond Rx). Briefly, sections were subjected to six sequential 
rounds of staining with each primary antibody followed by a second-
ary HRP-conjugated polymer (Leica; Novolink Polymer Detection 
System including antimouse postprimary and antirabbit polymer—
ref RE7260-CE). Signal amplification was achieved with TSA-Opal 
fluorophores (Akoya; OPAL diluent ref: FP1609; Supplementary  
Table S11). Before the first round and between each round of staining,  
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a heat-induced epitope retrieval step was performed (BOND epitope 
retrieval solution 2 ref AR9640). After the final round of antibody 
staining, slides were counterstained with DAPI (Thermo Fisher Sci-
entific; ref 62248; 1/2500) and mounted with ProLong Diamond 
antifade mounting medium (Thermo Fisher Scientific; ref P36965).

Whole-slide scans were captured using the Akoya PhenoImager  
HT multispectral imaging system (former Vectra Polaris) and Vectra 
Polaris 1.0.13 scanning software (Akoya Biosciences) at 20× magnifi-
cation (0.5 µm/pixel). Tissue regions were annotated using the Phe-
nochart 1.1.0 software (Akoya Biosciences), and spectral unmixing 
was then performed using Inform 2.6.0. Delmutiplexed images were 
exported as 32-bit component TIFF files. Resultant image tiles for 
each scan were then stitched together within QuPath version 0.4.4 
using a script available on the QuPath GitHub to produce a whole-
slide multichannel, pyramidal OME.TIFF image for downstream dig-
ital image analysis. Tissue annotation and nuclear segmentation were 
achieved using the HALO AI module version 3.6.4134 and cell phe-
notyping using the HALO image analysis platform version 3.6.4134 
(Indica Labs, Inc.). For each sample, the percentage of PAX8-positive 
tumor cells expressing ENPP1 was quantified.

Pathway Score Quantification.  To estimate pathway expression in 
TRACERx Renal samples, we calculated ssGSEA scores (50). We used 
the R package GSVA (v.1.48.3; ref. 51) with TPMs as input and de-
fault parameters. The pathways analyzed in this study encompassed 
the 50 hallmark signatures from the Molecular Signatures Database 
(MSigDB) and 9 signatures that define molecular subsets of ccRCC, 
as previously described by Motzer and colleagues (45).

TME Cell-Type Estimation.  To estimate the abundance of 18 
nontumor cell types, along with a global measure of immune infil-
tration, within the TME of TRACERx Renal samples, we performed 
bulk RNA-seq deconvolution through ConsensusTME (22). We used 
the public R package (v.0.0.1.9000; ref. 22), setting “statMethod” to 
“ssGSEA” and “cancer” to “KIRC.”

The accuracy of ConsensusTME in estimating the abundance of 
specific cell types was validated by comparing its outputs to the abun-
dance of T cells and macrophages as determined by CD3 and CD68 
staining, respectively, in IHC (see “Immunohistochemistry Quan-
tification of Macrophages and T Cells”). To assess the relationship 
between the two sets of estimates, we calculated Spearman’s rank cor-
relation test for 39 samples that had both ConsensusTME estimates 
for T-cell abundance and CD3 IHC quantification and for another 47 
samples that had ConsensusTME macrophage abundance estimates 
paired with CD68 IHC quantification.

TCR and BCR Deconvolution.  TCR and BCR assembly and quan-
tification from bulk RNA-seq were performed using MiXCR (v3.0.13; 
refs. 24, 25) on the pair-end RNA-seq fastq files using the following 
command: “mixcr analyze shotgun –species hs –starting-material 
rna –only-productive ${fastq1_path} ${fastq2_path} ${out_dir}.” The 
identified TCRɑ and TCRβ clonotypes and BCRκ and BCRλ clono-
types jointly defined TCR and BCR clones in this study. Clonotypes 
identified by MiXCR were imported with the repLoad function from 
the immunarch (RRID:SCR_023089) R package (v.0.9.0) for down-
stream analyses. A comprehensive benchmarking of the capacity of 
MiXCR to accurately identify TCR clonality and major clones is pro-
vided in Supplementary Note S2.

HERV/LTR Detection and Quantification.  HERV and LTR 
overlapping transcripts specifically expressed in ccRCC were pre-
viously described (32). To overcome the limitations of available 
genomic HERV/LTR annotations, we herein aligned RNA-seq to 
a de novo assembled transcriptome, which enables accurate align-
ment and hence quantification of HERV/LTR elements (23, 32). 
Both total counts and TPM were quantified for each HERV/LTR, 

as previously described (23, 32). In total, upon this procedure, we 
quantified the expression of 615 ccRCC-specific transcripts overlap-
ping known and annotated HERV/LTR elements.

scRNA-seq Data Integration and Harmonization.  We downloaded 
single-cell RNA-seq data from eight different studies (8, 13–19). The 
raw or processed expression matrix files were downloaded according 
to the original publications. Seurat objects were generated with the 
expression matrix using the Seurat (RRID:SCR_016341; ref. 52) R 
package (v.5.1.0) with available sample metadata.

To ensure the exclusion of low-quality cells and doublets, we re-
moved cells in which mitochondrial reads constituted more than 20% 
of the total reads. Cells with fewer than 200 RNA features or those 
exceeding the mean RNA feature count by more than 2.5 times the 
standard deviation for their respective study were also excluded. 
Additionally, we removed genes associated with mitochondria, ribo-
somes, and MALAT1.

The Seurat objects from different studies, encompassing a total 
of 954,023 cells, were integrated with Harmony. We then performed 
principal component analysis (PCA) and UMAP for dimensional 
reduction (using dimensions 1–30) via RunPCA and RunUMAP, re-
spectively. PTPRC gene expression was used to identify the immune 
cell clusters. Subsequently, the nonimmune cluster was subset and 
re-clustered with the steps above. We identified the cluster of normal 
proximal tubular cells by their expression of the marker genes CUBN 
and PDZK1IP1.

Finally, to identify ccRCC tumor cells, marked by the pathog-
nomic loss of 3p, we applied InferCNV (RRID:SCR_021140; v.1.3.3) 
with default setting on the nonimmune clusters, using the normal 
proximal tubular cells as reference. We calculated the mean residual 
expression value for genes in the region chr3:8,100,001 to 11,600,000 
for each cell within the InferCNV object. Based on the distribution of 
these values, we set a threshold of less than −0.05 (indicating loss of 
chr3p21) to classify cells as tumor cells. In total, across all the studies, 
we identified a total of 50,711 tumor cells following this procedure.

TCGA RNA-seq Data.  Raw RNA-seq counts from 538 TCGA- 
KIRC primary tumors were downloaded using the TCGAbiolinks 
(RRID:SCR_017683) package (v.2.20.0; ref. 53), with the following 
parameters: data.category = “Transcriptome Profiling,” data.type = 
“Gene Expression Quantification,” experimental.strategy = “RNA-Seq,” 
and workflow.type = “STAR - Counts.” Downloaded gene expression 
counts were normalized, as in the TRACERx Renal RNA-seq, using 
VST. The associated clinical information was obtained from the Sup-
plementary Data provided by Liu and colleagues (54).

We followed the same procedure to download and process clini-
cal and RNA-seq data from 17 additional tumor types where Li and 
colleagues (21) previously tested the association of ENPP1 expres-
sion with clinical outcome: BLCA, bladder urothelial carcinoma; 
BRCA, breast cancer; CESC, cervical squamous cell carcinoma and 
endocervical adenocarcinoma; COAD, colon adenocarcinoma; 
ESCA, esophageal carcinoma; HSCN, head and neck squamous cell 
carcinoma; KIRC, kidney renal clear-cell carcinoma; LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma; OVCA, ovar-
ian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; 
SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stom-
ach adenocarcinoma; THCA, thyroid carcinoma; THYM, thymoma; 
UCEC, uterine corpus endometrial carcinoma.

Analysis
UMAP.  To visualize transcriptional variation in the TRACERx 

Renal cohort, UMAP analysis was performed on all the 231 tumor 
samples in the TRACERx Renal cohort. UMAP was performed on 
VST counts using the umap (v.0.2.10) package in R with default 
parameters.
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Quantification of Transcriptional and TME Distance.  We esti-
mated transcriptional distance between two tumor regions from the 
same patient using the approach described by Martínez-Ruiz and  
colleagues (6). Briefly, we first calculated the top 500 most variable 
genes in the entire TRACERx Renal cohort by ranking the genes ac-
cording to the variance of VST counts across the cohort. Next, we 
used these 500 genes to calculate Pearson’s correlation between VST 
counts of these genes in a pair of samples, using the function dcor() 
from the energy (v.1.7-11) R package. This correlation (r) reflects  
the similarity in the transcriptional pattern of both samples. To trans-
form this similarity to a distance (d), we defined the distance as  
d = 1−r, where r is the correlation previously quantified. We followed 
this procedure to estimate the transcriptional distances between all 
the pairs of samples from the same patient in our cohort. To assess 
the impact of restricting the calculation of transcriptional distance 
to the top 500 genes, we repeated this procedure using progressive-
ly larger sets of genes (top 1,000, 2,500, 5,000, 10,000, 12,500, and 
15,000 most variable genes). We then correlated the scores from each 
of these sets with those derived from the top 500 most variable genes 
(Supplementary Fig. S3B).

We quantified TME distance following a similar approach. In this 
case, the input to these calculations was the abundance of all non-
tumor cell populations previously quantified using ConsensusTME 
(22). Here, the similarity between the TME of two samples was es-
timated with the cosine similarity (c) between the TME abundance 
vectors of two samples. Cosine similarity (c) was estimated using the 
function cosine() from the lsa (v.0.73.3) R package. The final distance 
(d) between a pair of samples was defined as d = 1−c, where c is the 
cosine similarity between the TME of both samples of the pair.

Comparison of Transcriptional Intratumor and Intertumor Het-
erogeneity.  To compare the relative difference in the magnitude 
of transcriptional intertumor heterogeneity relative to ITH, we cal-
culated transcriptional distance between (i) pairs of samples from 
the same patient (representing transcriptional ITH) and (ii) pairs 
of samples from distinct patients (representing transcriptional in-
tertumor heterogeneity). To estimate the mean and 95% confidence  
interval of the coefficient between transcriptional intertumor het-
erogeneity and ITH, we performed bootstrapping with 1,000 itera-
tions by (i) sampling with replacement from the pairs from the same 
and from different patients, (ii) estimating transcriptional intratu-
mor and intertumor heterogeneity as the mean distance between 
samples from pairs of the same and different patients, respectively, 
and (iii) dividing both estimates to obtain the distribution of the 
desired coefficient. The limits of the 95% confidence interval were 
next defined as the 2.5% and 97.5% quantiles of the 1,000 estimates 
of the coefficient.

Transcriptional and TME I-TED.  To obtain a final estimate of 
global transcriptional ITH per patient, we again emulated the ap-
proach previously followed by Martínez-Ruiz and colleagues (6). This 
metric was chosen because of its ability to provide an estimation of 
global transcriptional ITH that is independent of the number of sam-
ples available for each patient. This is crucial in our cohort given vari-
ations in the total number of samples per patient.

For each patient with more than one primary tumor RNA-seq sam-
ple available in the study, we calculated all possible transcriptional 
distances as described in the previous section (see “Quantification 
of Transcriptional and TME Distance”). Next we calculated for each 
patient the median of the transcriptional distances between all their 
primary–primary sample pairs. This median value is defined as I-TED 
and reflects the global transcriptional ITH within a patient’s tumor.

We obtained a per-patient estimate of TME ITH (TME I-TED) 
from pairwise TME distances—calculated as above described (see 
“Quantification of Transcriptional and TME Distance”)—in the 
same manner.

Correlates of Transcriptional I-TED.  We performed a multivari-
able linear regression to identify the proportion of the variance in 
transcriptional I-TED scores in TRACERx Renal explained by nine 
previously published clinical and genetic variables. The variables 
included in this analysis, and their rationale for inclusion, were as 
follows:

Potential Confounders

	 -	� Purity ITH: Differences in purity across tumor samples could  
introduce changes in the expression profile given the different 
admixture of the tumor and nontumor compartment—with dif-
ferent expression profiles—in distinct samples.

	 -	� Tumor size: Tumors with higher size might harbor a greater di-
versity of tumor cell subpopulations and/or microenvironments 
that, upon sampling, could ultimately result in high variation in 
the transcriptional profile between different samples from the 
same patient.

	 -	� Number of regions sampled: Alternative estimates of transcriptional 
ITH, including median variance in expression across genes in dis-
tinct samples from the same patient, are influenced by the total 
number of samples collected from each tumor. I-TED has the ad-
vantage of being robust to the total number of samples available 
for each patient and was specifically selected for this advantage, 
which avoids an artificial overestimation of ITH in patients with 
more available samples. This variable is included in the model to 
ensure I-TED properly controls this potential confounder in the 
TRACERx Renal cohort.

Suspected Biological Determinants of Transcriptional Variation

	 -	� Overall degree of mutation ITH (genetic ITH): Mutations that differ 
across regions of a tumor could imprint a different phenotype 
and/or transcriptome to the regions in which they are exclusively 
located. We therefore reasoned that genetic ITH could correlate 
with transcriptional ITH or I-TED.

	 -	� Copy number heterogeneity: Variations in gene dosage are known to 
underpin changes in gene expression (55). Therefore, we hypoth-
esized that copy number heterogeneity across different samples 
from a patient—summarized per patient as the fraction of the 
genome subjected to subclonal copy number alterations—should 
correlate with transcriptional ITH.

	 -	� Clinical stage: Genetic ITH has been recurrently associated with 
disease aggressiveness and clinical outcomes, and intratumor di-
versification occurs as a result of tumor evolution. We reasoned 
that transcriptional ITH (and hence I-TED) could be representing 
functional ITH, which could be associated with patient outcomes 
and disease stage at sampling.

Suspected Correlates of Greater Phenotypic Heterogeneity

	 -	� Subclonal mutations in any ccRCC epigenetic driver: Epigenetic reg-
ulation is a fundamental layer of gene expression control. We 
reasoned that the frequent epigenetic drivers observed in ccRCC 
(ARID1A, KDM5C, SETD2, BAP1, and PBRM1) in TRACERx Renal 
(2) could cause profound changes in the epigenome, which would 
result in broad differences in the transcriptome. Therefore, pa-
tients with subclonal variation in the mutational status in any of 
these drivers might display greater transcriptional ITH.

	 -	� 9p loss and 14q loss: Losses in 9p and 14q were nominated as driv-
ers of metastatic competence in the prior TRACERx Renal (3) and 
were recurrently found as subclonal alterations. We hypothesized 
that the acquisition of metastatic competence could imply a re-
markable change in the tumor phenotype and/or transcriptome. 
Therefore, we hypothesized that these events, as genetic drivers 
of metastatic competence, could cause and/or correlate with pro-
found transcriptional changes.
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In the first step, a multivariable linear regression analysis—using 
lm function from base R—was conducted to assess the relationship 
between these variables and I-TED. Subsequently, the significance 
of each variable’s contribution to explaining the variance in scores 
was evaluated using the anova function from base R.

Finally, to provide further context to the association of subclonal 
loss of 9p with increased transcriptional I-TED, we fitted the same 
multivariable linear regression model iteratively including only 1 
of the 14 previously described driver CNAs in the TRACERx Renal  
study (i.e., 9p loss, 14q loss, 3p loss, 1q gain, 7q gain, 6q loss, 12p loss, 
2q gain, 8q gain, 5q gain, 1p loss, 4q loss, 20q gain, and 8p loss).

Gene-Specific Linear Regression Framework.  To investigate the 
correlates of gene-specific changes in expression between samples 
from the same patient, we implemented a gene-specific linear regres-
sion framework. For each primary–primary pair of samples in the 
cohort, we calculated the following: (i) the difference in variance- 
stabilizing transofmations (VST) counts and (ii) the difference in 
copy number for each of 14,120 genes (genes passing expression fil-
tering criteria, mapped to autosomes and having available copy num-
ber information in TRACERx Renal), (iii) the difference in number 
of mutations in epigenetic drivers SETD2, PBRM1, ARID1A, KDM5C, 
and BAP1 (positive for higher number of mutated epigenetic drivers 
in the second sample, negative otherwise), (iv) the difference in 9p 
loss status (+1 for loss in the second sample and not the first, 0 for 
same status, −1 for loss in the first sample and not the second), and 
(v) the difference in WGD status (1 if the second sample was WGD 
and the first was not, 0 if the same status, −1 if the first sample was 
WGD and the second was not).

Upon calculation of these values, we fitted a linear mixed- 
effects model to differences in gene expression across 14,120 in 
TRACERx Renal primary–primary pairs, using as covariates (i) the 
difference in gene CN, (ii) the difference in number of mutations 
in epigenetic drivers, and (iii) the difference in 9p loss status.  
Additionally, binary and continuous values were randomly drawn 
and inputted as covariates in the model to obtain a background ex-
pectation. The patient ID for each primary–primary pair and WGD 
status were used as random covariates in the model to correct for 
the inclusion of several pairs from the same patient and for the po-
tentially different association of expression and gene absolute copy 
number depending on background WGD status. To avoid collin-
earity between difference in 9p loss status and gene-specific copy 
number difference for genes located in the 9p locus, we did not in-
clude the difference in copy number when the gene resided in the 
chromosome arm 9p.

To evaluate the changes in gene expression associated with the 
sample type (normal or metastasis), we fitted the same linear re-
gression model but included a new variable describing the type 
of pair. To evaluate the changes in gene expression from normal 
to primary, we performed the same analysis including primary– 
primary and primary–normal pairs, and this variable took a value 
of 1 if the second sample was normal and the first was not, 0 if 
both samples were of the same type, and −1 if the first sample was 
normal and the second was primary. To evaluate the changes in 
gene expression from primary to metastasis, we included primary– 
primary, primary–metastasis, and metastasis–metastasis pairs, 
and this variable was defined as 1 if the second sample was metas-
tasis and the first was primary, 0 if both samples were of the same 
type, and −1 if the first sample was a metastasis and the second 
was primary.

Quantification of TCR and BCR Similarity.  To assess the similar-
ities between the TCR and BCR repertoires between pairs of samples 
in the TRACERx Renal cohort, the Morisita–Horn index was used, 
which is a measure of community similarity that accounts for both 
the abundance and the diversity of species (or in this case, TCR or 

BCR clonotypes). The Morisita–Horn index was calculated using 
the repOverlap from the immunarch (RRID:SCR_023089; v.0.9.0) R 
package, with the method parameter set to “morisita.”

Quantification of Clonal Distance.  The separation between two 
clones in a tumor phylogenetic tree (defined as clonal distance in 
this study) informs about the extent to which they have evolved inde-
pendently; clones very far apart in a phylogenetic tree are likely to have 
independently acquired genetic and epigenetic changes for a longer 
time than two clones proximally located in the phylogenetic tree. We 
define the “clonal distance” between two tumor samples as the distance 
in the phylogenetic tree between the tumor clones they harbor.

In this study, we operationalize “clonal distance” as the separation 
between two tumor samples in the phylogenetic tree, reflecting the 
evolutionary divergence between the tumor clones they harbor. To ac-
complish this, we leveraged the phylogenetic tree reconstruction from 
a prior TRACERx Renal study (2). Initially, we identified the tumor 
clones present in each corresponding tumor sample. Subsequently, 
we quantified the distance in the phylogenetic tree between the tumor 
clone in one sample and its counterpart in the other. This distance 
was determined in practice as the number of edges required to tra-
verse from one clone to the other. Therefore, tumor regions harboring 
the same tumor clone are a special instance in which the clonal dis-
tance is zero. For regions hosting multiple tumor clones, we com-
puted the distance individually for each clone in one sample to all 
clones in the other. The clonal distance between the two samples was 
then summarized as the minimum observed distance.

Associations of Clonal Distance with Matched Transcriptional or  
Microenvironmental Distance.  To understand the coevolution of the 
tumor transcriptome or TME with the tumor genome, we first used 
the definitions provided in prior sections to estimate the (i) clonal 
distance (see “Quantification of Clonal Distance”), (ii) transcriptional 
distance (see “Quantification of Transcriptional and TME Distance”), 
(iii) TME distance (see “Quantification of Transcriptional and TME 
Distance”), and (iv) TCR and BCR similarity (see “Quantification of 
TCR and BCR Similarity”) between all the possible pairs of samples 
from the same patient in TRACERx Renal. The different types of dis-
tances were all tested for an association with clonal distance. We used 
linear mixed-effects models to test for such an association while con-
trolling for the inclusion of multiple pairs of samples from the same 
patient in the analysis. Differences in purity between samples were 
included as a covariate in the model.

Comparison of Transcriptional Distances between Primary–Normal, 
Primary–Primary, and Primary–Metastasis Pairs.  We compared 
the transcriptional distances between different types of pairs of 
samples: primary–normal, primary–primary, and primary–metas-
tasis. Transcriptional distances were calculated as described above 
(see “Quantification of Transcriptional and TME Distance”). For the 
comparison between primary–primary and primary–normal tran-
scriptional distances, only patients with at least one primary–primary 
and one primary–normal pair of samples were included. When mul-
tiple types of pairs were available for one patient, we summarized the 
transcriptional distance between samples of each type of pair to the 
observed maximum. After that, the changes in the transcriptional  
distances between primary–primary and primary–normal pairs of 
samples were compared using a paired Wilcoxon test. The same ap-
proach was used to compare primary–primary and primary–metastasis 
pairs, again including only patients with at least one primary–primary 
and one primary–metastasis pair of samples.

Analysis of Expression Changes from Matched Normal to Primary  
and Primary to Metastasis.  For each patient, we compared ssGSEA 
scores for 50 hallmark signatures from the MSigDB between 
matched normal–primary or primary–metastasis pairs. Only patients 
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with normal–primary and primary–metastasis pairs were included in 
these analyses, respectively. For patients with more than one normal 
or primary or metastasis sample, we summarized ssGSEA scores for 
each pathway and the type of sample by taking the average across all 
the samples of the same type. Paired normal–primary and primary–
metastasis ssGSEA scores were then compared using a paired Wilcoxon 
two-sided test.

Comparison of Transcriptional and Microenvironmental Distances  
between Metastases and Matched Seeding and Nonseeding Primary  
Regions.  To investigate whether transcriptional and/or microen-
vironmental patterns acquired during genetic coevolution in the 
primary tumor persist after metastatic dissemination, we examined 
whether the similarity between matched primary and metastatic 
samples was higher when the primary region harbored a clone that 
disseminated to the metastatic site. To this end, across patients 
with RNA-sequenced primary and metastasis samples, we calculated 
the distance in previously derived phylogenetic trees in TRACERx  
Renal from the latest (sub)clone(s) in the primary tumor sample to 
the MRCA of the matched metastasis. Primary tumor samples con-
taining the tumor (sub)clone spreading to the metastasis were de-
fined as “seeding” and otherwise as “nonseeding.”

Utilizing this classification, we compared the transcriptional dis-
tance and TCR similarity between primary seeding metastasis pairs 
and nonseeding primary–metastasis pairs. Both comparisons were 
conducted using linear mixed-effects models to adjust for the inclu-
sion of multiple pairs of samples from the same patient. Differences 
in purity between pairs of samples were included as a covariate in the 
model.

Gene Expression and TME Assignment to Individual Tumor Clones.  
Transcriptional data offer sample-level gene expression profiles and 
deconvoluted TME composition. To translate this information at 
the tumor sample to the clone level, we implemented the following 
approach:

1)	� Exclude polyclonal tumor regions: Tumor regions harboring mul-
tiple tumor clones were excluded from further analysis to ensure 
that each remaining region contains only a single clone.

2)	� Assign gene expression profile and TME composition to each clone:

	 -	� For clones present in only one monoclonal tumor sample, 
their gene expression profile and TME composition were set 
according to the observed values in the respective tumor sam-
ple in which the clone is located.

	 -	� For clones present in multiple monoclonal tumor samples, 
the gene expression profile and TME composition were de-
termined as the mean across all tumor samples in which the 
clone is present.

Association of Pathway Expression with Distance to the MRCA.  
To investigate recurrent gene expression changes occurring from 
earlier to later clones, we compared the expression of different path-
ways assigned to a given clone with a metric approximating its de-
gree of clonal evolution. Pathway expression was quantified using 
ssGSEA scores, which were transformed from per-region estimates 
to per-clone estimates following the procedure outlined in “Gene 
Expression and TME Assignment to Individual Tumor Clones.”

The degree of clonal evolution was approximated by the distance 
of a clone to the MRCA of the tumor population, calculated as the 
number of edges separating a clone from the MRCA. This compar-
ison allowed us to assess the transcriptional profile differences be-
tween more recent clones (distant from the MRCA) and ancient 
clones (closer to the MRCA).

To evaluate the association between ssGSEA scores and clonal 
age across the 50 MSigDB hallmark gene sets, we utilized linear 
mixed-effects models. This statistical approach allowed us to control 

for the inclusion of multiple samples from the same patient, thereby 
minimizing potential confounding effects. The purity of the sam-
ples containing a tumor subclone (average purity if multiple sam-
ples contained the same subclone) was included as a covariate in 
the model.

Subsequently, t-values and P-values resulting from the associ-
ation analysis were aggregated by MSigDB functional group, as 
defined by Martínez-Ruiz and colleagues (6). P-values were then 
adjusted for multiple hypothesis testing using the Benjamini–
Hochberg method.

Association between Transcriptional Distance to Matched Tumor- 
Adjacent Normal Samples and Distance to MRCA.  To analyze po-
tentially increased transcriptional distance from a tumor sample 
to matched normal kidney tissue putatively driven by clonal evolu-
tion, we compared the transcriptional distance between a primary 
tumor sample and a matched tumor-adjacent normal sample with 
the clonal distance from the tumor to its MRCA, calculated as de-
scribed in “Association of Pathway Expression with Distance to the 
MRCA.” Resulting transcriptional distances and distances to the 
tumor MRCA were compared using a linear mixed-effects model to 
control for the inclusion of multiple samples from the same patient 
in the analysis.

Association of Subclonal Driver Alterations and Changes in Gene 
Expression.  To identify the recurrent changes in gene expression 
co-occurring with the acquisition of subclonal copy number al-
terations associated with metastasis (9p and 14q loss) while con-
trolling for inter-patient variation, we used the procedure described 
in Fig. 4A. First, we identified tumors with subclonal alterations 
for a given gene copy number alteration. Next, we obtained an es-
timate of the expression of a given pathway in samples (i) with and 
(ii) without the driver alteration by taking the average ssGSEA score 
of given pathway in both groups of samples. Statistical significance 
of the within-patient differences in the scores between WT and mu-
tant regions observed in the TRACERx Renal cohort was obtained 
using a paired Wilcoxon test. This analysis was performed for the 
50 hallmark signatures from the MSigDB. The resulting P-values 
were corrected for multiple hypothesis testing using the Benjamini–
Hochberg method. The logarithm in base 10 of the resulting FDR 
values was plotted, using different colors for positive (red) and neg-
ative (blue) associations.

Differential Expression Analysis of 9p Loss and 14q Loss at Single 
Cells against WT Cells.  To evaluate the transcriptional impact of 
9p loss and 14q loss upon recent acquisition at the single-cell level, 
we downloaded and processed single-cell RNA-seq data from eight 
different studies (8, 13–19), followed by the identification of ccRCC 
tumor cells (marked by pathognomic 3p loss; see “scRNA-Seq Data 
Integration and Harmonization”).

To stratify the tumor cells with different 9p and 14q copy 
number alteration status, we used InferCNV (RRID:SCR_021140; 
v.1.3.3). The mean residual expression value of genes across the 
chr9:19,900,001 to 25,600,000 and chr14:19,900,001 to 33,200,000 
for each tumor cell from the InferCNV object was calculated. Based 
on these distributions, thresholds of −0.05 and 0.05 were deter-
mined to identify copy number loss and gain, respectively. Cells 
with a value between −0.05 and 0.05 were classified as copy number 
neutral for the locus.

Upon identification of cells with 9p and 14q loss, we performed 
pseudobulk differential expression analysis using the function Find-
Markers from the Seurat (RRID:SCR_016341) R package, with “test.
use” set to DESeq2. Because the aim of the analysis was to identify 
the immediate transcriptional impact of the loss of these chromo-
somal regions, we limited the analysis to only cells from patients with 
between 10% and 90% of cells and at least 10 total cells with the copy 
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number loss of the locus of interest. Obtained per-gene estimates of 
differential expression associated with both 9p and 14q loss were 
used as input to a gene set enrichment analysis of the 50 hallmark sig-
natures from the MSigDB, performed with fgsea R package (v.1.26.0).

Differential Expression Analysis of cGAS–STING Genes by Aneuploidy.  
To evaluate the changes in expression of genes involved in the cGAS–
STING response (Supplementary Table S6) associated with in-
creased aneuploidy, we performed differential expression analysis 
by weighted genome instability index of a tumor sample (wGII). 
We applied DESeq2 (v.1.40.2) to raw, unnormalized counts using 
wGII (as a continuous numerical variable) as the variable under 
study and purity as a covariate, to limit its effect in the observed 
transcriptional output.

Evaluation of Patterns of TME ITH.  To interrogate patterns  
of TME ITH, we performed hierarchical clustering of the abundance 
of 16 different nontumor cell populations estimated by Consen-
susTME (22). Abundance scores for all the nontumor cell populations 
were scaled across all samples included in the analysis. Hierarchical 
clustering was performed using the function heatmap() from the 
R package ComplexHeatmap (RRID:SCR_017270; v.2.16.0), using 
“manhattan” as the clustering distance of the column and “com-
plete” as the clustering method for rows and columns. Upon visual 
inspection, we identified three different groups and hence set “col-
umn_split” to 3.

Comparison of TME Composition between Different Evolutionary 
Trajectories.  We investigated the potential correlation between the 
abundance of specific cell types within the TME and the evolutionary 
trajectory in which they are situated.

Our analysis leveraged cell abundance estimates obtained through 
ConsensusTME (22) for each sample, along with patient-level evolu-
tionary trajectory annotations as previously delineated (2).

To quantify this association, we employed a linear mixed-effects 
model. In this model, we compared the cell abundance in samples fol-
lowing one trajectory against the cell abundance in samples classified 
within any of the other possible trajectories. Additionally, we con-
trolled for the inclusion of multiple samples from the same patient 
to mitigate potential confounding effects.

The resulting P-values from this analysis were log transformed 
(base 10) and plotted, with positive associations depicted in red and 
negative associations in blue.

Per-Patient Changes in the TME.  To uncover shifts in the TME 
composition between different primary tumor regions within a pa-
tient, we first labeled the nature of the TME into two categories: im-
munosuppressive and antitumor TME. Immunosuppressive TME 
was defined as higher mean-scaled ssGSEA scores (Z-scores) for the 
myeloid inflammation signature described by Motzer and colleagues 
(45), compared with mean-scaled scores (Z-scores) for the T-cell effec-
tor signature described by the same authors; otherwise the TME of 
the sample was classified as antitumor.

Second, we described the number of pairs of samples from the 
same patient in which the nature of the TME either remained stable 
(stable immunosuppressive or stable antitumor) or shifted from one 
category to the other (antitumor ↔ immunosuppressive).

Finally, we investigated how frequently the TME shifted during 
(i) progression through the phylogenetic tree (nonterminal clones vs. 
terminal clones), (ii) acquisition of mutations in SETD2, and (iii) loss 
of 9p. Nonterminal clones were defined as clones located internally in 
the patient phylogenetic tree; terminal clones were the leaves of the 
phylogenetic tree. TME assignment to these clones was performed as 
described in “Gene Expression and TME Assignment to Individual 
Tumor Clones.” For these comparisons, the enrichment for antitu-
mor → immunosuppressive transitions was evaluated by comparing 

the number of antitumor → immunosuppressive and immunosup-
pressive → antitumor transitions to a background expectation of  
50% chance for each type of transition using a chi-squared test.

To ensure that the identification of these transitions was not vul-
nerable to the specific classification of the nature of the TME, we per-
formed paired comparisons of ssGSEA scores for the T-cell effector 
signature from Motzer and colleagues (45). For these analyses, only 
patients with at least one sample categorized into each of the com-
pared groups were included. If multiple samples were available for 
one patient, the mean ssGSEA was taken as the per-patient score.

Patterns of Variation of HERV Expression, Link to TME, and Adap-
tive Immune Response.  To estimate the patterns of intratumor and 
intertumor HERV transcriptional heterogeneity, UMAP analysis 
was performed on 216 tumor samples in the TRACERx Renal co-
hort, limiting the analysis to the 615 transcripts identified earlier 
(see “HERV/LTR Detection and Quantification”). UMAP was per-
formed using the umap (v.0.2.10) package in R with default param-
eters. VST counts were obtained by applying DESeq2 (v.1.40.2) to 
raw, unnormalized HERV/LTR counts.

To estimate the differences in expression between VHL-mutated or 
methylated tumor samples and WT VHL tumor samples or adjacent 
normal tissue, we applied DESeq2 (v.1.40.2) to raw, unnormalized 
HERV/LTR counts.

To estimate the association between HERV/LTR and the com-
position of the TME, we applied Spearman’s rank correlation test 
between paired ConsensusTME microenvironment estimates and 
HERV expression using the function rcorr from the Hmisc R pack-
age (v.5.1-1), plotted using the corrplot R package (v.0.92). We ap-
plied the same procedure to correlate HERV/LTR expression to BCR 
and TCR diversity, estimated through Gini’s coefficient.

Association between Copy Number Alterations and Changes in HERV 
Expression.  To evaluate whether the expression of HERVs depends 
on the genomic copy number status of its locus, we performed an 
expression quantitative trait loci (eQTL) analysis, in which we could 
associate the expression of each HERV to the CN of its locus. Because 
the association with CN becomes preferentially detectable when 
HERVs are consistently expressed across tumor samples, we filtered 
out in this analysis 207 of 615 ccRCC-specific HERVs (32) that were 
expressed in less than 70% of tumor samples. We extracted the copy 
number status of each sample in the genomic coordinates of a giv-
en HERV and normalized HERV counts using a VST (as done in the 
results presented in Fig. 6). We then used a linear mixed-effects model 
to correlate the expression of a HERV by three fixed covariates— 
(i) copy number of the genomic locus it resides in, (ii) the purity 
of a tumor sample, and (iii) the VHL (WT or mutated/methylated) 
status of a sample—and patient of origin of the sample as a random 
covariate. Purity and VHL mutational/methylation status were in-
cluded as we or others previously described their impact on HERV 
expression.

Survival Analyses.  Kaplan–Meier curves were used to illustrate 
the differences in PFS between different groups. P-values indicated 
in Kaplan–Meier curves were calculated using a log-rank test. Esti-
mation and representation of Kaplan–Meier curves were performed 
using functions survfit and ggsurvplot from the survival (v.3.5-7) and 
survminer (v.0.4.9) R packages. To correct for covariates in different 
analyses, we applied Cox proportional hazards regression models us-
ing the function coxph from the survival R package (v.3.5-7).

Statistical Analysis.  For all the statistical tests, the significance 
level was fixed at 0.05 and P-values were corrected by post hoc  
Benjamini–Hochberg (FDR) correction when necessary. Sample 
sizes (n) are specified either by showing all individual points or by 
an indication in figure legends. No power calculations were run to 
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predetermine the sample size in any of the experiments. All genetic 
and molecular information derived from sequencing of TRACERx 
Renal samples were obtained after clinical data collection. Hence, 
clinical collection, but not data analysis, was blindly performed.

Data Availability
Multiregional DNA sequencing data on TRACERx Renal 101 pa-

tient cohort were published in a previous report, and corresponding 
raw data are available in the European Genome-phenome Archive 
(EGA) under the accession number EGAS00001002793. Data avail-
ability for the single-cell RNA-seq data used in this study is detailed 
in the corresponding source publications (8, 13–19). Processed  
RNA-seq data are provided in the GitHub repository associated with  
this publication at https://github.com/sanroman-24/tx100_rna_2024. 
Access to the raw RNA-seq data is controlled by the TRACERx Renal 
Data Access Committee. All other data supporting the findings of 
this study are publicly available without restrictions. The source code 
and data for reproducing analyses and figures are available at https://
github.com/sanroman-24/tx100_rna_2024
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