An in vivo barcoded CRISPR-Cas9 screen identifies Ncoa4-mediated ferritinophagy as a dependence in Tet2-deficient hematopoiesis

https://doi.org/10.1182/blood.2024028033 4th September 2025

Article highlights & insights

TET2 is among the most commonly mutated genes in both clonal hematopoiesis and myeloid malignancies; thus, the ability to identify selective dependencies in TET2-deficient cells has broad translational significance. Here, Loke et al identify regulators of Tet2 knockout (KO) hematopoietic stem and progenitor cell (HSPC) expansion using an in vivo CRISPR-Cas9 KO screen, in which nucleotide barcoding enabled large-scale clonal tracing of Tet2-deficient HSPCs in a physiologic setting.

The authors’ screen identified candidate genes, including Ncoa4, that are selectively required for Tet2 KO clonal outgrowth compared with wild type. Ncoa4 targets ferritin for lysosomal degradation (ferritinophagy), maintaining intracellular iron homeostasis by releasing labile iron in response to cellular demands. In Tet2-deficient HSPCs, increased mitochondrial adenosine triphosphate production correlates with increased cellular iron requirements and, in turn, promotes Ncoa4-dependent ferritinophagy. Restricting iron availability reduces Tet2 KO stem cell numbers, revealing a dependency in TET2-mutated myeloid neoplasms.

Gloved hands filling a stripette white lab coat

Latest from CRUK MI

Cancer Research In the Paterson Building

Find out more about the facilities across the Institute

Leukaemia Immunology & Transplantation

The Leukaemia Immunology and Transplantation laboratory aim to develop a comprehensive strategy to prevent post-transplant relapse in patients treated with allogeneic haematopoietic stem cell transplantation – the only curative therapy for many patients with acute myeloid leukaemia (AML) and other poor-risk haematological malignancies.

Patient derived preclinical models reveal novel biology of SCLC

Immune detection of dying tumour cells can elicit cancer immunity when the host permits it

Cancer Research In the Paterson Building
Leukaemia Immunology & Transplantation
Patient derived preclinical models reveal novel biology of SCLC