The small inhibitor WM-1119 effectively targets KAT6A-rearranged AML, but not KMT2A-rearranged AML, despite shared KAT6 genetic dependency

https://doi.org/10.1186/s13045-024-01610-0 8th October 2024

Article highlights & insights

Background

The epigenetic factors KAT6A (MOZ/MYST3) and KMT2A (MLL/MLL1) interact in normal hematopoiesis to regulate progenitors’ self-renewal. Both proteins are recurrently translocated in AML, leading to impairment of critical differentiation pathways in these malignant cells. We evaluated the potential of different KAT6A therapeutic targeting strategies to alter the growth of KAT6A and KMT2A rearranged AMLs.

Methods

We investigated the action and potential mechanisms of the first-in-class KAT6A inhibitor, WM-1119 in KAT6A and KMT2A rearranged (KAT6Ar and KMT2Ar) AML using cellular (flow cytometry, colony assays, cell growth) and molecular (shRNA knock-down, CRISPR knock-out, bulk and single-cell RNA-seq, ChIP-seq) assays. We also used two novel genetic murine KAT6A models combined with the most common KMT2Ar AML, KMT2A::MLLT3 AML. In these murine models, the catalytic activity of KAT6A, or the whole protein, can be conditionally abrogated or deleted. These models allowed us to compare the effects of specific KAT6A KAT activity inhibition with the complete deletion of the whole protein. Finally, we also tested these therapeutic approaches on human AML cell lines and primary patient AMLs.

Results

We found that WM-1119 completely abrogated the proliferative and clonogenic potential of KAT6Ar cells in vitro. WM-1119 treatment was associated with a dramatic increase in myeloid differentiation program. The treatment also decreased stemness and leukemia pathways at the transcriptome level and led to loss of binding of the fusion protein at critical regulators of these pathways. In contrast, our pharmacologic and genetic results indicate that the catalytic activity of KAT6A plays a more limited role in KMT2Ar leukemogenicity, while targeting the whole KAT6A protein dramatically affects leukemic potential in murine KMT2A::MLLT3 AML.

Conclusion

Our study indicates that inhibiting KAT6A KAT activity holds compelling promise for KAT6Ar AML patients. In contrast, targeted degradation of KAT6A, and not just its catalytic activity, may represent a more appropriate therapeutic approach for KMT2Ar AMLs.

Group leader

Research topics & keywords

Grants

The study was supported by Cancer Research UK (C5759/A20971 (G.L.), C5759/A27412 (G.L.), C19941/A31313 (M.S), Blood Cancer UK 19014 (G.L.), and an MSCA Postdoctoral Fellowship (658625, A.L.).

Meet the Research Team

Georges Lacaud

Senior Group Leader

iD
Ali Al-Anbanki
Ali Al-Anbaki

Postdoctoral Fellow

Ming Chen PhD Student
Ming Chen

PhD Student

Liam Clayfield PhD Student
Liam Clayfield

PhD Student

non-gendered icon
Harshangda Karan Puri

PhD Student

Portrait of Michael Lie-A-Ling
Michael Lie-a-ling

Senior Scientific Officer

iD
non-gendered icon
Mathew Sheridan

Clinical Fellow

non-gendered icon
Jessica Whittle

PhD Student

non-gendered icon
Jingru Xu

PhD Student

All publications

Filter by group
Filter by group leader
Filter by research topic
Filter by year
Search publications

https://doi.org/10.1186/s12943-024-02157-x

The PI3K-AKT-mTOR axis persists as a therapeutic dependency in KRASG12D-driven non-small cell lung cancer

12 November 2024

Institute Authors (1)

Amaya Viros

Labs & Facilities

Genome Editing and Mouse Models

array(1) { [0]=> int(2947) }

Research Group

Skin Cancer & Ageing

array(1) { [0]=> int(2344) }

https://doi.org/10.1186/s13045-024-01610-0

The small inhibitor WM-1119 effectively targets KAT6A-rearranged AML, but not KMT2A-rearranged AML, despite shared KAT6 genetic dependency

8 October 2024

Institute Authors (6)

Georges Lacaud, Mathew Sheridan, Michael Lie-a-ling, Liam Clayfield, Jessica Whittle, Jingru Xu

Research Group

Stem Cell Biology

int(2449)

/wp-content/uploads/2024/11/Annual-Report-2023.pdf

2023 Annual Report

13 September 2024

https://doi.org/10.1126/science.adh7954

Vitamin D regulates microbiome-dependent cancer immunity

25 April 2024

Institute Authors (1)

Evangelos Giampazolias

Research Group

Cancer Immunosurveillance

array(1) { [0]=> int(2341) }

https://doi.org/10.1038/s41684-024-01363-w

Streamlining mouse genome editing by integrating AAV repair template delivery and CRISPR-Cas electroporation

10 April 2024

Institute Authors (1)

Natalia Moncaut

Labs & Facilities

Genome Editing and Mouse Models

array(1) { [0]=> int(2947) }

https://www.biorxiv.org/content/10.1101/2023.12.13.568969v1

A novel human model to deconvolve cell-intrinsic phenotypes of genetically dysregulated pathways in lung squamous cell carcinoma

14 December 2023

Institute Authors (3)

Carlos Lopez-Garcia, Caroline Dive, Anthony Oojageer

Research Group

Translational Lung Cancer Biology

array(1) { [0]=> int(2321) }
Gloved hands filling a stripette white lab coat

Latest from CRUK MI

Cancer Research In the Paterson Building

Find out more about the facilities across the Institute

Leukaemia Immunology & Transplantation

The Leukaemia Immunology and Transplantation laboratory aim to develop a comprehensive strategy to prevent post-transplant relapse in patients treated with allogeneic haematopoietic stem cell transplantation – the only curative therapy for many patients with acute myeloid leukaemia (AML) and other poor-risk haematological malignancies.

Patient derived preclinical models reveal novel biology of SCLC

Immune detection of dying tumour cells can elicit cancer immunity when the host permits it

Cancer Research In the Paterson Building
Leukaemia Immunology & Transplantation
Patient derived preclinical models reveal novel biology of SCLC

Careers that have a lasting impact on cancer research and patient care

We are always on the lookout for talented and motivated people to join us.  Whether your background is in biological or chemical sciences, mathematics or finance, computer science or logistics, use the links below to see roles across the Institute in our core facilities, operations teams, research groups, and studentships within our exceptional graduate programme.

Institute life in Manchester

We strive to make our community a welcoming, caring and enthusiastic one, fuelling ambition with opportunities for training and mentoring to help us all achieve our personal and professional goals.

“We are so pleased to have received the funding to enable us to test our hypothesis in the lab. If we can create a new medicine that can precisely target a specific type of cell within the tumour, and restore anti-cancer immune responses, this will be a game-changer for oesophageal cancer patients “

Sara Valpione

Former Institute Clinical Fellow and now Clinician in Residence within the CRUK National Biomarker Centre

“My charity bake sales – known as “David’s Great British Bake Off” – are always a hit, home baked products taste so much better than shop bought and are greatly appreciated by staff!”

David Jenkins

Purchasing Officer

“We’ve seen some remarkable responses, with an improvement for some patients within days. This is an early phase trial so there’s a lot more work to do. But the data we have so far is very encouraging and could help many thousands of people in the future”

Tim Somervaille

Senior Group Leader

“It is a pleasure to introduce my team who work to deliver our research goals. We work in a friendly and collaborative environment, supporting each other’s projects.  “

Amaya Virós

CRUK Advanced Clinician Scientist Fellow